Answer:
All Brake lights are dimmer than normal because high resistance in the brake switch could be the cause according to Technician B.
Explanation:
According to Technician A
When the bulb is faulty then no current will flow through bulb and it will be open circuit.So no light will produce in bulb .
According to Technician B
When a high resistance inserted in series circuit the voltage across each resistance is reduced and this cause the light glow dimly.
Formula of resistance in series circuit
Rt=r1+r2+r3......
Answer:
Explanation:
A smaller clearance volume means a higher compression. A higher compression means better thermal efficiency. However a compression ratio too high might be troublesome, as it can cause accidental ignition of the fuel-air mix. This is the reason why Otto cycle engines have lower compressions that Diesel engines. In a Diesel engine the mix ignites by compression instead of a spark.
(a) The number of vacancies per cubic centimeter is 1.157 X 10²⁰
(b) ρ = n X (AM) / v X Nₐ
<u>Explanation:</u>
<u />
Given-
Lattice parameter of Li = 3.5089 X 10⁻⁸ cm
1 vacancy per 200 unit cells
Vacancy per cell = 1/200
(a)
Number of vacancies per cubic cm = ?
Vacancies/cm³ = vacancy per cell / (lattice parameter)³
Vacancies/cm³ = 1 / 200 X (3.5089 X 10⁻⁸cm)³
Vacancies/cm³ = 1.157 X 10²⁰
Therefore, the number of vacancies per cubic centimeter is 1.157 X 10²⁰
(b)
Density is represented by ρ
ρ = n X (AM) / v X Nₐ
where,
Nₐ = Avogadro number
AM = atomic mass
n = number of atoms
v = volume of unit cell
Answer:
The value of heat transferred watt per foot length Q = 54.78 Watt per foot length.
Explanation:
Diameter of pipe = 2 in = 0.0508 m
Steam temperature
= 300 F = 422.04 K
Duct temperature
= 70 F = 294.26 K
Emmisivity of surface 1 = 0.79
Emmisivity of surface 2 = 0.276
Net emmisivity of both surfaces ∈ = 0.25
Stefan volazman constant
= 5.67 ×

Heat transfer per foot length is given by
Q = ∈
A (
) ------ (1)
Put all the values in equation (1) , we get
Q = 0.25 × 5.67 ×
× 3.14 × 0.0508 × 1 × (
)
Q = 54.78 Watt per foot.
This is the value of heat transferred watt per foot length.