Answer:
C: Stop before entering the pedestrian crosswalk.
Explanation:
Answer:
a) C= 1/120
b) P(X>=5) = 0.333
Explanation:
The attached file contains the explanation for the answers
Answer:
// Program is written in C++
// Comments are used to explain some lines
// Only the required function is written. The main method is excluded.
#include<bits/stdc++.h>
#include<iostream>
using namespace std;
int divSum(int num)
{
// The next line declares the final result of summation of divisors. The variable declared is also
//initialised to 0
int result = 0;
// find all numbers which divide 'num'
for (int i=2; i<=(num/2); i++)
{
// if 'i' is divisor of 'num'
if (num%i==0)
{
if (i==(num/i))
result += i; //add divisor to result
else
result += (i + num/i); //add divisor to result
}
}
cout<<result+1;
}
Answer:
14.506°C
Explanation:
Given data :
flow rate of water been cooled = 0.011 m^3/s
inlet temp = 30°C + 273 = 303 k
cooling medium temperature = 6°C + 273 = 279 k
flow rate of cooling medium = 0.02 m^3/s
Determine the outlet temperature
we can determine the outlet temperature by applying the relation below
Heat gained by cooling medium = Heat lost by water
= ( Mcp ( To - 6 ) = Mcp ( 30 - To )
since the properties of water and the cooling medium ( water ) is the same
= 0.02 ( To - 6 ) = 0.011 ( 30 - To )
= 1.82 ( To - 6 ) = 30 - To
hence To ( outlet temperature ) = 14.506°C
Answer:
a. The very first liquid process, when heated from 1250 degree Celsius, is expected to form at the temperature by which the vertical line crosses the phase boundary (a -(a + L)) which is about <em>1310 degree Celsius. </em>
b. The structure of that first liquid is identified by the intersection with ((a+ L)-L) phase boundary; <em>47wt %of Ni</em> is of a tie line formed across the (a+ L) phase area <em>at 1310 degrees.</em>
c. To find the alloy's full melting, it is determined that the intersection of the same vertical line at 60 wt percent Ni with (a -(a+L)) phase boundary is around <em>1350 degrees.</em>
c. The structure of the last remaining solid before full melting correlates to the intersection with the phase boundary (a -(a + L), of the tie line built at 1350 degrees across the (a + L) phase area, <em>being 72wt % of Ni.</em>