1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
EleoNora [17]
2 years ago
8

A reversible power cycle R and an irreversible power cycle I operate between the same hot and cold thermal reservoirs. Cycle I h

as a thermal efficiency equal to one third the thermal efficiency of R.
a. If each cycle receives the same amout of energy by heat transfer from the hot reservor, detrmine which cycle:
1. develops greater net work.
2. discharges greater energy by heat transfer to the cold reservoir

b. If each cycle develops the same net work, determine which cycle:
1. receives greater net energy by heat transfer from the hot reservoir
2. discharges greater energy by heat transfer to the cold reservoir.
Engineering
1 answer:
anygoal [31]2 years ago
4 0

Answer: Attached below is the missing diagram

answer :

A)   1) Wr > WI,     2) Qc' > Qc

B)   1) QH' > QH,   2) Qc' > Qc

Explanation:

  л = w / QH = 1 - Qc / QH  and  QH = w + Qc

<u>A) each cycle receives same amount of energy by heat transfer</u>

<u>(</u> Given that ; Л1 = 1/3 ЛR )

<em>1) develops greater bet work </em>

WR develops greater work ( i.e. Wr > WI )

<em>2) discharges greater energy by heat transfer</em>

 Qc' > Qc

solution attached below

<u>B) If Each cycle develops the same net work </u>

<em>1) Receives greater net energy by heat transfer from hot reservoir</em>

QH' > QH   ( solution is attached below )

<em>2) discharges greater energy  by heat transfer to the cold reservoir</em>

Qc' > Qc

solution attached below

You might be interested in
Refrigerant-134a at 400 psia has a specific volume of 0.1144 ft3/lbm. Determine the temperature of the refrigerant based on (a)
vekshin1

Answer:

a) Using Ideal gas Equation, T = 434.98°R = 435°R

b) Using Van Der Waal's Equation, T = 637.32°R = 637°R

c) T obtained from the refrigerant tables at P = 400 psia and v = 0.1144 ft³/lbm is T = 559.67°R = 560°R

Explanation:

a) Ideal gas Equation

PV = mRT

T = PV/mR

P = pressure = 400 psia

V/m = specific volume = 0.1144 ft³/lbm

R = gas constant = 0.1052 psia.ft³/lbm.°R

T = 400 × 0.1144/0.1052 = 434.98 °R

b) Van Der Waal's Equation

T = (1/R) (P + (a/v²)) (v - b)

a = Van Der Waal's constant = (27R²(T꜀ᵣ)²)/(64P꜀ᵣ)

R = 0.1052 psia.ft³/lbm.°R

T꜀ᵣ = critical temperature for refrigerant-134a (from the refrigerant tables) = 673.6°R

P꜀ᵣ = critical pressure for refrigerant-134a (from the refrigerant tables) = 588.7 psia

a = (27 × 0.1052² × 673.6²)/(64 × 588.7)

a = 3.596 ft⁶.psia/lbm²

b = (RT꜀ᵣ)/8P꜀ᵣ

b = (0.1052 × 673.6)/(8 × 588.7) = 0.01504 ft³/lbm

T = (1/0.1052) (400 + (3.596/0.1144²) (0.1144 - 0.01504) = 637.32°R

c) The temperature for the refrigerant-134a as obtained from the refrigerant tables at P = 400 psia and v = 0.1144 ft³/lbm is

T = 100°F = 559.67°R

7 0
3 years ago
Whats the best used for cable -stayed bridge
nalin [4]

Answer:

a cable -stayed bridge has, one or more towers,from which cable support the bridge deck.

7 0
3 years ago
The increasing interconnections of peoples and countries around the world is known as ________.
Irina18 [472]
I think it’s rationalization.
Hope this helps
4 0
3 years ago
Read 2 more answers
Air at 400kPa, 970 K enters a turbine operating at steady state and exits at 100 kPa, 670 K. Heat transfer from the turbine occu
Sonja [21]

Answer:

a

The rate of work developed is \frac{\r W}{\r m}= 300kJ/kg

b

The rate of entropy produced within the turbine is   \frac{\sigma}{\r m}=  0.0861kJ/kg \cdot K

Explanation:

     From  the question we are told

          The rate at which heat is transferred is \frac{\r Q}{\r m } = -  30KJ/kg

the negative sign because the heat is transferred from the turbine

          The specific heat capacity of air is c_p = 1.1KJ/kg \cdot K

          The inlet temperature is  T_1 = 970K

          The outlet temperature is T_2 = 670K

           The pressure at the inlet of the turbine is p_1 = 400 kPa

          The pressure at the exist of the turbine is p_2 = 100kPa

           The temperature at outer surface is T_s = 315K

         The individual gas constant of air  R with a constant value R = 0.287kJ/kg \cdot K

The general equation for the turbine operating at steady state is \

               \r Q - \r W + \r m (h_1 - h_2) = 0

h is the enthalpy of the turbine and it is mathematically represented as          

        h = c_p T

The above equation becomes

             \r Q - \r W + \r m c_p(T_1 - T_2) = 0

              \frac{\r W}{\r m}  = \frac{\r Q}{\r m} + c_p (T_1 -T_2)

Where \r Q is the heat transfer from the turbine

           \r W is the work output from the turbine

            \r m is the mass flow rate of air

             \frac{\r W}{\r m} is the rate of work developed

Substituting values

              \frac{\r W}{\r m} =  (-30)+1.1(970-670)

                   \frac{\r W}{\r m}= 300kJ/kg

The general balance  equation for an entropy rate is represented mathematically as

                       \frac{\r Q}{T_s} + \r m (s_1 -s_2) + \sigma  = 0

          =>          \frac{\sigma}{\r m} = - \frac{\r Q}{\r m T_s} + (s_1 -s_2)

    generally (s_1 -s_2) = \Delta s = c_p\ ln[\frac{T_2}{T_1} ] + R \ ln[\frac{v_2}{v_1} ]

substituting for (s_1 -s_2)

                      \frac{\sigma}{\r m} = \frac{-\r Q}{\r m} * \frac{1}{T_s} +  c_p\ ln[\frac{T_2}{T_1} ] - R \ ln[\frac{p_2}{p_1} ]

                      Where \frac{\sigma}{\r m} is the rate of entropy produced within the turbine

 substituting values

                \frac{\sigma}{\r m} = - (-30) * \frac{1}{315} + 1.1 * ln\frac{670}{970} - 0.287 * ln [\frac{100kPa}{400kPa} ]

                    \frac{\sigma}{\r m}=  0.0861kJ/kg \cdot K

           

 

                   

   

5 0
3 years ago
Three groups of students are given study outlines for 6 weeks. One group studies 2 hours a night, a second group studies 1 hour
katrin2010 [14]

Answer:

The constant here is the study outline

Explanation:

In scientific research, the constant variable is that part/variable of the experiment that does not change or is set not to change. Examples include temperature, environment or height.

Assuming the scenery described in this question is an experiment. All the groups presented are bound by a constant during the experiment. The constant here is the study outline. The study outline provided to the students is not going to change.

NOTE: There could be confusion as regards the answer being the final exam grade but that will be the dependent variable as that will be the outcome of the experiment while the time spent to study will be the independent variable.

8 0
2 years ago
Other questions:
  • A cylinder contains 480 cm3 of loose dry sand which weighs 820 g. Under a static load of 200 kPa the volume is reduced 1%, and t
    15·1 answer
  • The army has cars and boats etc right
    7·1 answer
  • Which engineers are requried to have a PE (professional engineer) license?
    13·2 answers
  • What substance do humans give to livestock to help them stay healthy?
    5·1 answer
  • A light bar AD is suspended from a cable BE and supports a 20-kg block at C. The ends A and D of the bar are in contact with fri
    13·1 answer
  • You want to plate a steel part having a surface area of 160 with a 0.002--thick layer of lead. The atomic mass of lead is 207.19
    15·1 answer
  • What are three automotive safety systems
    14·1 answer
  • You are designing the access control policies for a Web-based retail store. Customers access the store via the Web, browse produ
    11·1 answer
  • Which is the maximum length for any opening on the surface of a 2G SMAW guided bend test specimen?
    11·1 answer
  • Excessive looseness in steering and suspension components can cause _____
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!