Answer:
P and V: inversely proportional
P and T: directly proportional
V and T: inversely proportional
Explanation:
For pressure and volume, as the volume goes up, meaning the container gets bigger, the pressure would go down. There would be more room in the container, so there would be less collisions between the molecules themselves and between the molecules and the container. This makes them inversely proportional.
For pressure and temperature, as the pressure goes up, there are more collisions, so the particles move faster. Temperature is the speed of the particles, so, since both pressure and temperature would go up at the same time, they are directly proportional.
For volume and temperature, this is similar to the PV relationship. As volume increases, there are less collisions between the particles. This means that the particles are going to move slower. Therefore, as volume goes up, temperature goes down, so they are inversely proportional.
Sorry this is super long, but I hope it fully explains the question for you! ☺
It is 2.1 x 10^3 because your base number needs to be in between 1 and 10, and the number you are converting is non-decimal, so the exponent is positive. It is 10^3 because you are moving the decimal 3 places to the right
Answer:
410.196 J/[kg*°C].
Explanation:
1) the equation of the energy is: E=c*m*(t₂-t₁), where E - energy (523 J), c - unknown specific heat of copper, m - mass of this copper [kg], t₂ - the final temperature, t₁ - initial temerature;
2) the specific heat of copper is:
![c=\frac{E}{m*(t_2-t_1)}; \ => \ c=\frac{523}{0.085*(45-30)}=\frac{523}{1.275}=410.196[\frac{J}{kg*C}].](https://tex.z-dn.net/?f=c%3D%5Cfrac%7BE%7D%7Bm%2A%28t_2-t_1%29%7D%3B%20%5C%20%3D%3E%20%5C%20c%3D%5Cfrac%7B523%7D%7B0.085%2A%2845-30%29%7D%3D%5Cfrac%7B523%7D%7B1.275%7D%3D410.196%5B%5Cfrac%7BJ%7D%7Bkg%2AC%7D%5D.)
Answer:
Pb(NO₂)₂(aq) + 2 LiCl(aq) ⇒ PbCl₂(s) + 2 LiNO₂(aq)
Explanation:
Let's consider the reaction between aqueous lead (II) nitrite and aqueous lithium chloride to form solid lead (II) chloride and aqueous lithium nitrite.
Pb(NO₂)₂(aq) + LiCl(aq) ⇒ PbCl₂(s) + LiNO₂(aq)
This is a double displacement reaction. We will start balancing Cl by multiplying LiCl by 2.
Pb(NO₂)₂(aq) + 2 LiCl(aq) ⇒ PbCl₂(s) + LiNO₂(aq)
Now, we have to balance Li by multiplying LiNO₂ by 2.
Pb(NO₂)₂(aq) + 2 LiCl(aq) ⇒ PbCl₂(s) + 2 LiNO₂(aq)
The equation is now balanced.