Answer:
Cohesive forces are greater than adhesive forces
Step-by-step explanation:
The attractive forces between water molecules and the wax on a freshly-waxed car (adhesive forces) are quite weak.
However, there are strong attractive forces (cohesive forces) between water molecules.
The water molecules are only weakly attracted to the wax, so the cohesive forces pull the water molecules together to form beads
.
Reaction equations contains symbols which show the physical state of the reactants and products.
<h3>What is a chemical equation:</h3>
A chemical equation is an expression that shows the interaction of reactants to yield products. Usually, symbols such as (s), (l), (g), and (aq) are used to show the state of the reactants and products.
The following are the respective meanings of these symbols;
- (s) - solid
- (l) - Liquid
- (g) - gas
- (aq) - dissolved in water
Learn more about reaction equations: brainly.com/question/1170557
hope it helps please brainliest
1s^2, 2s^2, 2p^6, 3s^2, 3p^6, 3d^5, 4s^1
Chromium is strange because it moves on to the 4s orbital instead of filling the 3d orbital with that last electron. Tricky.
Mark as brainliest if this helped! :)
<u>Answer:</u> For the given equation, only iron has the value of
equal to 0 kJ.
<u>Explanation:</u>
Enthalpy change is defined as the difference in enthalpies of all the product and the reactants each multiplied with their respective number of moles. It is represented as 
The equation used to calculate enthalpy change is of a reaction is:
![\Delta H^o_{rxn}=\sum [n\times \Delta H^o_f(product)]-\sum [n\times \Delta H^o_f(reactant)]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H%5Eo_f%28product%29%5D-%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H%5Eo_f%28reactant%29%5D)
For the given chemical reaction:

The equation for the enthalpy change of the above reaction is:
![\Delta H^o_{rxn}=[(1\times \Delta H^o_f_{(Fe(s))})+(3\times \Delta H^o_f_{(CO_2(g))})]-[(3\times \Delta H^o_f_{(CO(g))})+(2\times \Delta H^o_f_{(Fe_2O_3(s))})]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5B%281%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28Fe%28s%29%29%7D%29%2B%283%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28CO_2%28g%29%29%7D%29%5D-%5B%283%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28CO%28g%29%29%7D%29%2B%282%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28Fe_2O_3%28s%29%29%7D%29%5D)
The enthalpy of formation for the substances present in their elemental state is taken as 0.
Here, iron is present in its elemental state which is solid.
Hence, for the given equation, only iron has the value of
equal to 0 kJ.