Answer:
80m, assuming g=10m/s^2
Explanation:
40m/s will be reduced to 0m/s in 4 seconds. 4 seconds x 40m/s would be 160m up, but you will only get half of that because you decelerate linearly to 0m/s. This leaves you with 4 x 20 = 80m.
Just do what u would do if u were at a stop sign
The correct answer to the question is : B) The weight of the water, and C) The height of the water.
EXPLANATION :
Before coming into any conclusion, first we have to understand potential energy of a body.
The potential energy of a body due to its position from ground is known as gravitational potential energy.
The gravitational potential energy is calculated as -
Potential energy P.E = mgh
Here, m is the mass of the body, and g is the acceleration due to gravity.
h stands for the height of the body from the ground.
We know that weight of a body is equal to the product of mass with acceleration due to gravity.
Hence, weight W = mg
Hence, potential energy is written as P.E = weight × height.
Hence, potential energy depends on the weight and height of the water.
The number of grams of carbon that combine with 16 g of oxygen in the formation of CO₂ is 6g.
When two elements combine to make more than one compound, the masses of one element combined with a fixed amount of another element are in the ratio of whole numbers, according to the law of multiple proportions.
When combined with oxygen, carbon can produce two different compounds. They are referred to as carbon dioxide (CO₂) and carbon monoxide (CO).
Carbon monoxide is formed by combining 12 g of carbon with 16 g of oxygen whereas Carbon dioxide is formed when 12 g of carbon reacts with 32 g of oxygen. The amount of carbon is fixed at 12 g in each case. The mass ratio of carbon monoxide to carbon dioxide is 16: 32, or 1: 2.
But in the given case, 16g of oxygen is reacting instead of 32g. Therefore, the number of grams of carbon reacting will be:

Thus, 6g of carbon will react with 16g of oxygen to form carbon dioxide.
Read more about Law of Multiple Proportions:
brainly.com/question/13058110
#SPJ4
If the boat is floating, then it's just sitting there, and not accelerating
up or down. That means the vertical forces on it must be balanced.
So if its weight (acting downward) is 100 newtons, then the buoyant
force on it (acting upward) must also be 100 newtons.