Given:-
- Speed of the unicycle = 20 m/s
- Time taken = 15 s
To Find: Distance travelled by the unicycle.
We know,
s = vt
where,
- s = Distance travelled,
- v = Speed &
- t = Time taken.
Therefore,
s = (20 m/s)(15 s)
→ s = (20 m)(15)
→ s = 300 m (Ans.)
Sunlight is radiant energy. The radiant energy is converted into chemical energy through the process of photosynthesis in the chlorophyll i think thats what u looking for
chromatic aberration problem do refractor telescopes have that reflectors don't
<u>Explanation:</u>
Chromatic aberration is a phenom in which light rays crossing through a lens focus at various points, depending on their wavelength. Chromatic aberration is a dilemma in which lens or refracting, telescopes undergo from. The various image distances for the respective colors affect various image sizes for them.
This involves the creation of disturbing color fringes in the image. Chromatic aberration can be pretty well adjusted by the use of an achromatic doublet. Here, a positive biconvex lens is coupled with a negative lens placed backward with greater dispersion. Thus partly compensates for the chromatic aberration.
Answer:
Explanation:
a ) starting from rest , so u = o and initial kinetic energy = 0 .
Let mass of the skier = m
Kinetic energy gained = potential energy lost
= mgh = mg l sinθ
= m x 9.8 x 70 x sin 30
= 343 m
Total kinetic energy at the base = 343 m + 0 = 343 m .
b )
In this case initial kinetic energy = 1/2 m v²
= .5 x m x 2.5²
= 3.125 m
Total kinetic energy at the base
= 3.125 m + 343 m
= 346.125 m
c ) It is not surprising as energy gained due to gravitational force by the earth is enormous . So component of energy gained due to gravitational force far exceeds the initial kinetic energy . Still in a competitive event , the fractional initial kinetic energy may be the deciding factor .