So we want to know what changes inside the multimeter when we change the voltage range from 200 V to 20 V, by what factor and does it increase or decrease. What we want when trying to measure the voltage with a multimeter is that a minimal current passes trough the mulitmeter so when we change the voltage range, we decrease the resistance by a factor of 10 because the voltage is decreased by a factor of 10.
Answer:
Explanation:
Range of projectile R = 20 m
formula of range
R = u² sin2θ / g
u is initial velocity , θ is angle of projectile
putting the values
20 = u² sin2x 40 / 9.8
u² = 199
u = 14.10 m /s
At the initial point
vertical component of u
= u sin40 = 14.1 x sin 40
= 9.06 m/s
Horizontal component
= u cos 30
At the final point where the ball strikes the ground after falling , its speed remains the same as that in the beginning .
Horizontal component of velocity
u cos 30
Vertical component
= - u sin 30
= - 9.06 m /s
So its horizontal component remains unchanged .
change in vertical component = 9.06 - ( - 9.06 )
= 18.12 m /s
change in momentum
mass x change in velocity
= .050 x 18.12
= .906 N.s
Impulse = change in momentum
= .906 N.s .
Explanation:
Initial speed of the rocket, u = 0
Acceleration of the rocket, 
Time taken, t = 3.39 s
Let v is the final velocity of the rocket when it runs out of fuels. Using the equation of kinematics as :

Let x is the initial position of the rocket. Using third equation of kinematics as :


Let
is the position at the maximum height. Again using equation of motion as :

Now
and v and u will interchange



x = 524.14 meters
Hence, this is the required solution.
Answer:If an object's speed changes, or if it changes the direction it's moving in,
then there must be forces acting on it. There is no other way for any of
these things to happen.
Once in a while, there may be a group of forces (two or more) acting on
an object, and the group of forces may turn out to be "balanced". When
that happens, the object's speed will remain constant, and ... if the speed
is not zero ... it will continue moving in a straight line. In that case, it's not
possible to tell by looking at it whether there are any forces acting on it
Answer:

Explanation:
from the ideal gas law we have
PV = mRT


HERE R is gas constant for dry air = 287 J K^{-1} kg^{-1}


We know by ideal gas law



for m_2



WE KNOW
PV = mRT
V, R and T are constant therefore we have
P is directly proportional to mass



