Forehead, Feet and Elbows, if the person is perfect health condition.
Answer:

Explanation:
We were told to calculate the speed of the ball,
Given speed of sound as 340 m
And we know that the sound of the ball hitting the pins is at 2.80 s after the ball is released from his hands.
Speed of ball = distance traveled/(time of hearing - time the sound travels).
Speed= S/t
Where S= distance traveled
t= time of hearing - time the sound travels
time=time for ball to roll+timefor sound to come back.
time of sound=16.5/340
=0.048529secs
solving for speedof ball
Then,Speed of ball = distance traveled/(time of hearing - time the sound travels).
=16.5/(2.80-0.048529) m/s = 5.997m/s
Therefore, the speed of the ball is
5.997m/s
Answer:
we agree with
Edgar: The net force on the ball at the top position is 9 N. Both the tension and the weight are acting downward so you have to add them.
Explanation:
Weight of the ball is given as

so we have


now tension force at the top is given as


Now at the top position by force equation we can say that ball will have two downwards forces
1) Tension force
2) Weight of the ball
so net force on the ball is given as


So we agree with
Edgar: The net force on the ball at the top position is 9 N. Both the tension and the weight are acting downward so you have to add them.
Using
V = Amplitude x angular frequency(omega)
But omega= 2πf
= 2πx875
=5498.5rad/s
So v= 1.25mm x 5498.5
= 6.82m/s
B. .Acceleration is omega² x radius= 104ms²