As v becomes zero at the highest point, i prefer considering different travelling directions so it will become less complicated.
dont forget to add the total time up .
also to master the skills, write down the "uvsat" may help (thats the way i found it easier to handle problems)
Pure water.
A salt solution contains impurities whereas pure water will not contain any impurities.
Impurities increase the boiling point (freezing point) of a substance.
Thus, I would expect the pure water solution to freeze faster than the salt solution.
Answer:
ax = 6.43m/s²
Explanation:
The acceleration is the time derivative of the velocity function ax = dvx(t)/dt
We have been given the velocity function v(t) and also the velocity v = 12.0m/s and we are requested to calculate the acceleration at this time which we don't know.
So the first step is to calculate the time at which the velocity =12.0m/s and with this time calculate the acceleration. Detailed solution can be found in the attachment below.
This is an interesting (read tricky!) variation of Rydberg Eqn calculation.
Rydberg Eqn: 1/λ = R [1/n1^2 - 1/n2^2]
Where λ is the wavelength of the light; 1282.17 nm = 1282.17×10^-9 m
R is the Rydberg constant: R = 1.09737×10^7 m-1
n2 = 5 (emission)
Hence 1/(1282.17 ×10^-9) = 1.09737× 10^7 [1/n1^2 – 1/25^2]
Some rearranging and collecting up terms:
1 = (1282.17 ×10^-9) (1.09737× 10^7)[1/n2 -1/25]
1= 14.07[1/n^2 – 1/25]
1 =14.07/n^2 – (14.07/25)
14.07n^2 = 1 + 0.5628
n = √(14.07/1.5628) = 3