1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Aliun [14]
3 years ago
11

Please help on this one and show work <3

Physics
1 answer:
kiruha [24]3 years ago
4 0

It would be 1274 Joules, or D. The formula for potential energy is mass x gravity (9.8) x height.

You might be interested in
A student observed a sample of water in three states of matter. The student should describe the liquid water as a state of matte
Nadya [2.5K]

Answer:

B. Less volume than a solid state

6 0
3 years ago
Momentum is a vector quantity that depends
MissTica
On the change in potential energy
3 0
3 years ago
An ocean thermal energy conversion system is being proposed for electric power generation. Such a system is based on the standar
defon

Answer:

Explanation:

Dear Student, this question is incomplete, and to attempt this question, we have attached the complete copy of the question in the image below. Please, Kindly refer to it when going through the solution to the question.

To objective is to find the:

(i) required heat exchanger area.

(ii) flow rate to be maintained in the evaporator.

Given that:

water temperature = 300 K

At a reasonable depth, the water is cold and its temperature = 280 K

The power output W = 2 MW

Efficiency \zeta = 3%

where;

\zeta = \dfrac{W_{out}}{Q_{supplied }}

Q_{supplied } = \dfrac{2}{0.03} \ MW

Q_{supplied } = 66.66 \ MW

However, from the evaporator, the heat transfer Q can be determined by using the formula:

Q = UA(L MTD)

where;

LMTD = \dfrac{\Delta T_1 - \Delta T_2}{In (\dfrac{\Delta T_1}{\Delta T_2} )}

Also;

\Delta T_1 = T_{h_{in}}- T_{c_{out}} \\ \\ \Delta T_1 = 300 -290 \\ \\ \Delta T_1 = 10 \ K

\Delta T_2 = T_{h_{in}}- T_{c_{out}} \\ \\ \Delta T_2 = 292 -290 \\ \\ \Delta T_2 = 2\ K

LMTD = \dfrac{10 -2}{In (\dfrac{10}{2} )}

LMTD = \dfrac{8}{In (5)}

LMTD = 4.97

Thus, the required heat exchanger area A is calculated by using the formula:

Q_H = UA (LMTD)

where;

U = overall heat coefficient given as 1200 W/m².K

66.667 \times 10^6 = 1200 \times A \times 4.97 \\ \\  A= \dfrac{66.667 \times 10^6}{1200 \times 4.97} \\ \\  \mathbf{A = 11178.236 \ m^2}

The mass flow rate:

Q_{H} = mC_p(T_{in} -T_{out} )  \\ \\  66.667 \times 10^6= m \times 4.18 (300 -292) \\ \\ m = \dfrac{  66.667 \times 10^6}{4.18 \times 8} \\ \\  \mathbf{m = 1993630.383 \ kg/s}

3 0
3 years ago
A permanent magnet has a magnetic dipole moment of 0.160 A · m^2. The magnet is in the presence of an external uniform magnetic
Elena L [17]

Answer:

the magnitude of the torque  on the permanent magnet = 7.34×10⁻³ Nm

the potential energy (in J) of the system consisting of the permanent magnet and the magnetic field provided by the coils =  -1.0485 ×10⁻² J

Explanation:

The torque is given by :

\bar {N} = \bar {m} * \bar {B}

where ;

m = 0.160 A.m²

B = 0.0800 T

θ = 35°

So the magnitude of the torque N = mBsinθ

N = (0.160)(0.0800)(sin 35°)

N = 0.007341

N = 7.34×10⁻³ Nm

Hence, the magnitude of the torque  on the permanent magnet = 7.34×10⁻³ Nm

b) The potential energy \bar{U} = \bar{-m} * \bar{B}

U = -mBcosθ

U = (- 0.160)(0.0800)(cos 45)

U = -0.010485

U = -1.0485 ×10⁻² J

Thus, the potential energy (in J) of the system consisting of the permanent magnet and the magnetic field provided by the coils =  -1.0485 ×10⁻² J

6 0
3 years ago
Determine the angular velocity ω of the telescope as it orbits around the Sun.
lara31 [8.8K]
The JWST is postioned about 1.5 million kilometers from the earth on the side facing away from the sun
5 0
3 years ago
Other questions:
  • Encoding information occurs throughout?
    10·1 answer
  • Calculate the internal energy (in J) of 86 mg of helium at a temperature of 0°C.
    7·1 answer
  • The lithosphere is made up of the ____
    9·2 answers
  • According to the Guinness Book of World Records (1999) the highest rotary speed ever attained was 2010 m/s (4500 mph) The rotati
    9·1 answer
  • what are known as the properties of substances that help describe a substance et does not change that substances?
    14·1 answer
  • An object has a position given by the radius vector r = [2.0 m + (3.00 m/s)t](i)+ [3.0 m - (2.00 m/s^2)t^2](j). Here (i) and (j)
    10·1 answer
  • Gamma rays
    14·1 answer
  • A mountain climber increases their height from 200 meters to 400 meters. What affect will this have on their potential energy?
    14·1 answer
  • These 2 processes cause watersheds to change.
    8·2 answers
  • What is nuclear fission?​
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!