Answer:
a) For P: 
For Q: 
b) For P:

for Q:

c) As the distance from the axis increases then speed increases too.
Explanation:
a) Assuming constant angular acceleration we can find the angular speed of the wheel dividing the angular displacement θ between time of rotation:

One rotation is 360 degrees or 2π radians, so θ=2π

Angular acceleration is at every point on the wheel, but speed (tangential speed) is different and depends on the position (R) respect the rotation axis, the equation that relates angular speed and speed is:

for P:

for Q:

b) Centripetal acceleration is:

for P:

for Q:

c) As seen on a) speed and distance from axis is
because ω is constant the if R increases then v increases too.
In nature there are two categories of microorganisms as relating to health. Microorganisms that are considered harmful to humans are called pathogens and these cause disease. Examples include bacteria such as streptococcus which cause sore throat and salmonella which cause typhoid disease.
There are some microorganisms which are helpful to man and they live mostly on the skin of man or in his gut and are mostly bacteria. They are collectively called bacterial normal flora.
In man the normal bacterial flora of the skin include staphylococcus found on dry skin, cornybacteria found in moist skin sites and propionibacteria in the sebaceous sites (head, neck, trunk) of the body. Normal bacterial flora of the gut include Escherichia coli.
One of the major function of bacterial flora is actually to protect our bodies by competing for space with pathogens preventing them from gaining a foothold in our bodies.
<h2>
Distance traveled in 1 second after drop is 4.9 m</h2><h2>
Distance traveled in 4 seconds after drop is 78.4 m</h2>
Explanation:
We have s = ut + 0.5at²
For a free falling object initial velocity u = 0 m/s and acceleration due to gravity, g = 9.8 m/s²
Substituting
s = 0 x t + 0.5 x 9.8 x t²
s = 4.9t²
We need to find distance traveled in 1 s and 4 s
Distance traveled in 1 second
s = 4.9 x 1² = 4.9 m
Distance traveled in 4 seconds
s = 4.9 x 4² = 78.4 m
Distance traveled in 1 second after drop = 4.9 m
Distance traveled in 4 seconds after drop = 78.4 m
Assuming Earth's gravity, the formula for the flight of the particle is:
<span>s(t) = -16t^2 + vt + s = -16t^2 + 144t + 160. </span>
<span>This has a maximum when t = -b/(2a) = -144/[2(-16)] = -144/(-32) = 9/2. </span>
<span>Therefore, the maximum height is s(9/2) = -16(9/2)^2 + 144(9/2) + 160 = 484 feet. </span>