Answer:
A) If you want to achieve the SMALLEST possible resistance, you should attach the leads to the opposite faces that measure b) 5 cm by 8 cm.
B) If you want to achieve the LARGEST possible resistance, you should attach the leads to the opposite faces that measure a) 3 cm × 5 cm
Explanation:
Resistivity is directly proportional to lenght and inversely properly to cross sectional area.
For the first case, 5 cm by 8 cm gives the largest area and leave 3 cm as the lenght. The resistivity of the metal will be smallest in these dimensions.
For the second case, 3 cm by 5 cm gives the smallest area, leaving 8 cm as the lenght. This is the maximum arrangement that can give the largest resistance possible.
Answer: When we use an analogy that represents the expanding universe with the surface of an expanding balloon, what does the inside of the balloon represent? The inside of the balloon does not represent any part of our universe.
Answer:
Up first are Mercury and Venus. Neither of them has a moon. Because Mercury is so close to the Sun and its gravity, it wouldn't be able to hold on to its own moon. Any moon would most likely crash into Mercury or maybe go into orbit around the Sun and eventually get pulled into it.
Answer:
12 km/h
Explanation:
Average Speed = Distance / Time (or rate)
Pick a point on the graph for Ian and plug in values.
For example, 20 minutes -> 4km
Hence, Average speed = 4km ÷ 20 minutes = 0.2 km/min
0.2 km/min × 60 = 12 km/h
Well, the surface of still water has surface tension. If there isn't enough mass or weight to break the surface tension, the object will float.