Answer:
No.
Explanation:
Given the following :
Velocity (V) of ball = 5m/s
Radius = 1m
Can the ball reach the highest point of the circular track
of radius 1.0 m?
The highest point in the track could be considered as the diameter of the circle :
Radius = diameter / 2;
Diameter = (2 * Radius) = (2*1) = 2
Maximum height which the ball can reach :
Using the relation :
Kinetic Energy = Potential Energy
0.5mv^2 = mgh
0.5v^2 = gh
0.5(5^2) = 9.8h
0.5 * 25 = 9.8h
12.5 = 9.8h
h = 12.5 / 9.8
h = 1.2755
h = 1.26m
Therefore maximum height which can be reached is 1.26m.
Since h < Diameter
Recall that to compute for the emf of a circuit given current and inductance, we must recall that
where I is the current (A), M is the mutual inductance (h), and t is the time (ms). Since the current must not exceed 80.0 V, we have
From this, we see that it must take at least 0.35 ms so it doesn't exceed 80 V.
Answer: 0.35 ms
EC_1 + EP_1 = EC2 + EP_2
EC_2 = 0
EC_2 = EP_1 - EP_2
EC_2 = mg(H_1 - H_2) = 0.20 kg * 9.8 m/s^2 * (3.25 m - 1.5m) = 3.43 J