Answer:
current I = 38 mA
Explanation:
given data
distance r = 7.2 cm
repel each other force per unit length \frac{F}{l} = 4.2 nN/m
solution
we know 2 wire is parallel and when current flow through these wire they exert force each other due to magnetic field
and current I(1) = I(2) ................1
so
..................2
put here value
4.2 ×
=
solve it we get
I = 0.038884 A
current I = 38 mA
<span>Thallium. 81 Protons, post-transitional metal that is not found in nature. </span>
Answer:

Explanation:
As we know that the orbital speed is given as

here we know that
v = 5500 m/s


now we have


now acceleration due to gravity of planet is given as



now range of the projectile on the surface of planet is given as



Answer:
It is a measure of the electric force per unit charge on a test charge.
Explanation:
The magnitude of the electric field is defined as the force per charge on the test charge.
Since we define electric field as the force per charge, it will have the units of force divided by the unit of charge. This implies that the SI unit of electric field is given as Newton/Coulomb (N/C).
Answer:
<em>The amount of electric charge transported = 0.192 C</em>
Explanation:
Electric Charge: This is defined as the product of electric current and time in an electric circuit, The S.I unit of electric charge is Coulombs (C)
Q = It..................... Equation 1
Where Q = Electric charge, I = electric current, t = time.
<em>Given:</em> I = 285 mA, t = 674 milliseconds.
<em>Conversion: (i) Convert from 285 mA to A = (285/1000) A = 0.285 A</em>
<em> (ii) convert from 674 milliseconds to seconds = (674/1000) s = 0.674 s </em>
Substituting these values into equation 1
Q = 0.285 × 0.674
<em>Q = 0.192 C</em>
<em>Therefore the amount of electric charge transported = 0.192 C</em>
<em></em>
<em></em>