Answer:
32000 N
Explanation:
From the question given above, the following data were obtained:
Initial velocity (u) = 40 m/s
Distance (s) = 10 m
Final velocity (v) = 0 m/s
Mass (m) of car = 400 Kg
Force (F) =?
Next, we shall determine the acceleration of the the car. This can be obtained as follow:
Initial velocity (u) = 40 m/s
Distance (s) = 10 m
Final velocity (v) = 0 m/s
Acceleration (a) =?
v² = u² + 2as
0² = 40² + (2 × a × 10)
0 = 1600 + 20a
Collect like terms
0 – 1600 = 20a
–1600 = 20a
Divide both side by –1600
a = –1600 / 20
a = –80 m/s²
The negative sign indicate that the car is decelerating i.e coming to rest.
Finally, we shall determine the force needed to stop the car. This can be obtained as follow:
Mass (m) of car = 400 Kg
Acceleration (a) = –80 m/s²
Force (F) =?
F = ma
F = 400 × –80
F = – 32000 N
NOTE: The negative sign indicate that the force is in opposite direction to the motion of the car.
The building sector plays a large role in the energy consumption which includes space heating or cooling, domestic hot water and electricity. Buildings with their long lifespan and huge amount of already existing buildings, makes revision in energy characteristics of a building constrained.
The statement that is true is a. the large bran muffin contains more heat energy. This statement holds true because of the equation E=mc2. E= Energy, m=mass and c=the speed of light. Although both muffins are at room temperature, the larger will theoretically have more heat energy because it has more mass.
Answer:
This question is incomplete
Explanation:
The question is incomplete because of the absence of options.
However, <u>the force that makes a paint cling to a wall is adhesive force</u>. Adhesive force is the force between two unlike substances like a liquid clinging to a solid surface.
The force between adhesives or glue is also the force that makes them sticky. <u>This force is referred to as cohesive force</u>. This is a force found in between similar molecules (unlike adhesive force found between dissimilar molecules).
<u>The force that makes wax to stick to a car is electromagnetic force</u>. This is a force between charged particles; whether they appear to be moving or not. These particles of opposite charges come together to form a neutral force. In this case, charged atoms of the car and the wax come together (which causes what we see as the wax sticking to the car).