Answer:
6.13428 rev/s
Explanation:
= Final moment of inertia = 4.2 kgm²
I = Moment of inertia with fists close to chest = 5.7 kgm²
= Initial angular speed = 3 rev/s
= Final angular speed
r = Radius = 76 cm
m = Mass = 2.5 kg
Moment of inertia of the skater is given by

In this system the angular momentum is conserved

The rotational speed will be 6.13428 rev/s
<span>In order for
an object to accelerate, a <u>force</u> must be applied. It follows Newton’s second
law of motion where it states that a body at rest remains at rest unless a
force is acted upon it. When you move an object, you are exerting a force onto
it. By exerting a force on the object, you are actually displacing it from its
initial position. You cannot apply force to the object without altering its
position. Keep in mind that when you exert work, you are exerting energy too. </span>
Answer:
The velocity of the particle from T = 0 s to T = 4 s is;
0.5 m/s
Explanation:
The given parameters from the graph are;
The initial displacement (covered) at time, t₁ = 0 s is x₁ = 1 m
The displacement covered at time, t₂ = 4 s is x₂ = 3 m
The graph of distance to time, from time t = 0 to time t = 4 is a straight line graph, with the velocity given by the rate of change of the displacement to the time which is dx/dt which is also the slope of the graph given as follows;


The velocity of the particle from t = 0 s to t = 4 s = 1/2 m/s = 0.5 m/s.
Answer:
I think it turns into heat (thermal) energy if I'm right
D) they will all hit the ground at the same time. In the context that there is no air resistance and each object is in free fall, then they will have the same acceleration rate.