Answer:
1.7 mL
Explanation:
<em>A chemist must prepare 550.0 mL of hydrochloric acid solution with a pH of 1.60 at 25 °C. He will do this in three steps: Fill a 550.0 mL volumetric flask about halfway with distilled water. Measure out a small volume of concentrated (8.0 M) stock hydrochloric acid solution and add it to the flask. Fill the flask to the mark with distilled water. Calculate the volume of concentrated hydrochloric acid that the chemist must measure out in the second step. Round your answer to 2 significant digits.</em>
Step 1: Calculate [H⁺] in the dilute solution
We will use the following expresion.
pH = -log [H⁺]
[H⁺] = antilog - pH = antilog -1.60 = 0.0251 M
Since HCl is a strong monoprotic acid, the concentration of HCl in the dilute solution is 0.0251 M.
Step 2: Calculate the volume of the concentrated HCl solution
We want to prepare 550.0 mL of a 0.0251 M HCl solution. We can calculate the volume of the 8.0 M solution using the dilution rule.
C₁ × V₁ = C₂ × V₂
V₁ = C₂ × V₂/C₁
V₁ = 0.0251 M × 550.0 mL/8.0 M = 1.7 mL
Answer:
A
Explanation:
To answer this, we need to use Gay-Lussac's law, which states that:
, where P is pressure and T is temperature
The initial pressure we're given is 4.5 atm (so P1 = 4.5) and the temperature is 45.0°C; however, we need to change Celsius to Kelvins, so add 273 to 45.0: 45.0 + 273 = 318 K (so T1 = 318).
The final pressure is what we want to find, but we do know the final temperature is 3.1°C. Converting this to Kelvins, we get: 3.1 + 273 = 276.1 K, which means T2 = 276.1.
Plug these values in:

Multiply both sides by 276.1:
≈ 3.9 atm
The answer is thus A.
Answer:
.Periodic trends are specific patterns in the properties of chemical elements that are revealed in the periodic table of elements. Major periodic trends include electronegativity, ionization energy, electron affinity, atomic radii, ionic radius, metallic character, and chemical reactivity.
Hydrogen-1, Carbon-13, Nitrogen-15, Fluorine-19, and Phosphorus-31 are the most useful. Out of these, Hydrogen-1 and Carbon-13 in NMR are the most useful nuclei because the these atoms are the most commonly present in organic molecules.