1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
xxMikexx [17]
3 years ago
15

crate sits on a horizontal floor where the coefficient of static friction between the crate and the floor is 0.50. A 20-N force

is applied to the crate acting to the right. What is the resulting static friction force acting on the crate
Physics
1 answer:
mr_godi [17]3 years ago
6 0

Answer:

The resulting static friction force acting on the crate is 10 N.

Explanation:

Given that,

Coefficient of static friction = 0.50

Normal force = 20 N

We need to calculate the resulting static friction force acting on the crate

Using formula of static friction force

f_{s}=\mu_{s}N

Where, N = normal force

\mu_{s} = Coefficient of static friction

Put the value into the formula

f_{s}=0.50\times20

f_{s}=10\ N

Hence, The resulting static friction force acting on the crate is 10 N.

You might be interested in
Which statement about polymers is true?
Mamont248 [21]
Where are the statements? You forgot to attach them lol
6 0
3 years ago
Two isolated, concentric, conducting spherical shells have radii R1 = 0.500 m and R2 = 1.00 m, uniform charges q1=+2.00 µC and q
scZoUnD [109]

Complete Question

The diagram for this question is shown on the first uploaded image  

Answer:

a E =1.685*10^3 N/C

b E =36.69*10^3 N/C

c E = 0 N/C

d V = 6.7*10^3 V

e   V = 26.79*10^3V

f   V = 34.67 *10^3 V

g   V= 44.95*10^3 V

h    V= 44.95*10^3 V

i    V= 44.95*10^3 V

Explanation:

From the question we are given that

       The first charge q_1 = 2.00 \mu C = 2.00*10^{-6} C

       The second charge q_2 =1.00 \muC = 1.00*10^{-6}

      The first radius R_1 = 0.500m

      The second radius R_2 = 1.00m

 Generally \ Electric \ field = \frac{1}{4\pi\epsilon_0}\frac{q_1+\ q_2}{r^2}

And Potential \ Difference = \frac{1}{4\pi \epsilon_0}   [\frac{q_1 }{r}+\frac{q_2}{R_2} ]

The objective is to obtain the the magnitude of electric for different cases

And the potential difference for other cases

Considering a

                      r  = 4.00 m

           E = \frac{((2+1)*10^{-6})*8.99*10^9}{16}

                = 1.685*10^3 N/C

Considering b

           r = 0.700 m \ , R_2 > r > R_1

This implies that the electric field would be

            E = \frac{1}{4\pi \epsilon_0}\frac{q_1}{r^2}

             This because it the electric filed of the charge which is below it in distance that it would feel

            E = 8*99*10^9  \frac{2*10^{-6}}{0.4900}

               = 36.69*10^3 N/C

   Considering c

                      r  = 0.200 m

=>   r

 The electric field = 0

     This is because the both charge are above it in terms of distance so it wont feel the effect of their electric field

       Considering d

                  r  = 4.00 m

=> r > R_1 >r>R_2

Now the potential difference is

                  V =\frac{1}{4\pi \epsilon_0} \frac{q_1 + \ q_2}{r} = 8.99*10^9 * \frac{3*10^{-6}}{4} = 6.7*10^3 V

This so because the distance between the charge we are considering is further than the two charges given  

          Considering e

                       r = 1.00 m R_2 = r > R_1

                V = \frac{1}{4\pi \epsilon_0} [\frac{q_1}{r} +\frac{q_2}{R_2}  ] = 8.99*10^9 * [\frac{2.00*10^{-6}}{1.00} \frac{1.00*10^{-6}}{1.00} ] = 26.79 *10^3 V

          Considering f

              r = 0.700 m \ , R_2 > r > R_1

                      V = \frac{1}{4\pi \epsilon_0} [\frac{q_1}{r} +\frac{q_2}{R_2}  ] = 8.99*10^9 * [\frac{2.00*10^{-6}}{0.700} \frac{1.0*10^{-6}}{1.00} ] = 34.67 *10^3 V

          Considering g

             r =0.500\m , R_1 >r =R_1

   V = \frac{1}{4\pi \epsilon_0} [\frac{q_1}{r} +\frac{q_2}{R_2}  ] = 8.99*10^9 * [\frac{2.00*10^{-6}}{0.500} \frac{1.0*10^{-6}}{1.00} ] = 44.95 *10^3 V

          Considering h

                r =0.200\m , R_1 >R_1>r

  V = \frac{1}{4\pi \epsilon_0} [\frac{q_1}{R_1} +\frac{q_2}{R_2}  ] = 8.99*10^9 * [\frac{2.00*10^{-6}}{0.500} \frac{1.0*10^{-6}}{1.00} ] = 44.95 *10^3 V

           Considering i    

   r =0\ m \ , R_1 >R_1>r

  V = \frac{1}{4\pi \epsilon_0} [\frac{q_1}{R_1} +\frac{q_2}{R_2}  ] = 8.99*10^9 * [\frac{2.00*10^{-6}}{0.500} \frac{1.0*10^{-6}}{1.00} ] = 44.95 *10^3 V

8 0
3 years ago
Two loudspeakers are 1.60 m apart. A person stands 3.00 m from one speaker and 3.50 m from the other. (a) What is the lowest fre
VMariaS [17]

Answer:

Explanation:

Given

Distance between two loud speakers d=1.6\ m

Distance of person from one speaker x_1=3\ m

Distance of person from second speaker x_2=3.5\ m

Path difference between the waves is given by

x_2-x_1=(2m+1)\cdot \frac{\lambda }{2}

for destructive interference m=0 I.e.

x_2-x_1=\frac{\lambda }{2}

3.5-3=\frac{\lambda }{2}

\lambda =0.5\times 2

\lambda =1\ m

frequency is given by

f=\frac{v}{\lambda }

where v=velocity\ of\ sound\ (v=343\ m/s)

f=\frac{343}{1}=343\ Hz

For next frequency which will cause destructive interference is

i.e. m=1 and m=2

3.5-3=\frac{2\cdot 1+1}{2}\cdot \lambda

\lambda =\frac{1}{3}\ m

frequency corresponding to this is

f_2=\frac{343}{\frac{1}{3}}=1029\ Hz

for m=2

3.5-3=\frac{5}{2}\cdot \lambda

\lambda =\frac{1}{5}\ m

Frequency corresponding to this wavelength

f_3=\frac{343}{\frac{1}{5}}

f_3=1715\ Hz                        

8 0
4 years ago
From a hot air balloon that is at rest at a certain height, a projectile is launched horizontally at 30m / s, how fast will it h
Yuki888 [10]

Answer:

A. 50 m/s

Explanation:

Given in the y direction:

v₀ = 0 m/s

a = 10 m/s²

t = 4 s

Find: v

v = at + v₀

v = (10 m/s²) (4 s) + 0 m/s

v = 40 m/s

In the x direction, the velocity is constant at 30 m/s.

The overall speed is:

v² = (30 m/s)² + (40 m/s)²

v = 50 m/s

3 0
3 years ago
Read 2 more answers
2. Human Impact on the Environment
Kitty [74]
Burning fossil fuels emits a number of air pollutants that are harmful to both the environment and public health. Sulfur dioxide (SO2) emissions, primarily the result of burning coal, contribute to acid rain and the formation of harmful particulate matter.
8 0
3 years ago
Other questions:
  • Which group number is aluminum in?
    15·2 answers
  • a 12.0L container is filled with a gas to a pressure of 2660 torr at 0°C. At what temp. will the pressure inside the container b
    5·1 answer
  • While skydiving, your parachute opens and you slow from 50.0 m/s to 8.0 m/s in 0.75 s . Determine the distance you fall while th
    7·1 answer
  • Is gravity a non-contact form?
    11·1 answer
  • A worker pushes a large rock to the north while another worker helps by pushing it to the east. If they both exert equal force,
    12·1 answer
  • Astronauts on the first trip to Mars take along a pendulumthat has a period on earth of 1.50 {\rm s}. The period on Mars turns o
    12·1 answer
  • 1. A 0.40 kg ball is launched at a speed of 16 m/s from a 22 m cliff.
    9·1 answer
  • If the star Alpha Centauri were moved to a distance 10 times farther than it is now, its parallax angle would
    5·1 answer
  • Write a short summary paragraph that could go at the end of the text
    10·1 answer
  • Arm ab has a constant angular velocity of 16 rad/s counterclockwise. At the instant when theta = 60
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!