Answer:
The law of conservation of momentum states that the total momentum of interacting objects does not <u>change</u>. This means the total momentum <u>before</u><u> </u>a collision or explosion is equal to the total momentum <u>after</u><u> </u>a collision or explosion.
Before going to answer this question first we have to know the fundamental principle of magnetism.
A magnet have two poles .The important characteristic of a magnet is that like poles will repel each other while unlike poles will attract each other.
Through this concept the question can be answered as explained below-
A-As per first option the side of magnet A is repelled by the south pole of magnet B. Hence the pole of a must be south .It can't be north as it will lead to attraction.
B-The side of magnet A is repelled by the north pole of magnet B. Hence the side of A must be north pole.It can't be a south pole.
C-The side of magnet A is attracted by the south pole of magnet B .Hence the side of magnet A must be north.Hence this is right
D-The side of magnet A is attracted by the north pole of magnet B. Hence the side of A must south.It can't be north as it will lead to repulsion.
Hence the option C is right.
The correct statement is
Ultraviolet light has both a higher frequency and a higher radiant energy than visible light.
because ultraviolet light has wavelength smaller than the visible light hence has a greater frequency as compared to visible light. (frequency is inversely related to wavelength. hence smaller the wavelength , greater will be the frequency)
we also know that the radiant energy is directly proportional to the frequency. hence greater the frequency , greater will be the radiant energy.
Since the frequency is greater for ultraviolet light , it radiant energy is also greater
A. the carbons are unbalanced
B. the hydrogens are unbalanced.
D. the chlorines are unbalanced.
That leaves C. to be correctly balanced.
Answer:
If you mean Lewis dot diagrams, aka electron-dot diagrams, then these are diagrams that show the bonding between atoms of a molecule, and the lone pairs of electrons that may exist in the molecule.
Explanation: