1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
DENIUS [597]
3 years ago
6

A worker exerts a pulling force on a box. The worker exerts this force by attaching a rope to the box and pulling on the rope so

that the rope makes a constant angle of 36.8° above the horizontal. The coefficient of kinetic friction between the box and the floor is 0.10. It takes the worker 5.12 seconds to move the box 10 m from rest. A. What is the magnitude of the pulling force that the worker exerts on the box? Express your answer as a percentage of the magnitude of the gravitational force acting on the box. Indicate any assumptions that you made.
Physics
1 answer:
shusha [124]3 years ago
7 0

Answer:

<em>The magnitude of the pulling force is 20.66% of the gravitational force acting on the box</em>

Explanation:

<u>Accelerated Motion</u>

The net force exerted on a body is the (vector) sum of all forces applied to the body. The net force can be decomposed in its rectangular components and the dynamics of the body can be studied in each direction x,y separately.

Let's start off by calculating the acceleration the worker gives to the box when pulling it. The distance traveled by the box initially at rest in a time t at an acceleration a is given by

\displaystyle x=\frac{at^2}{2}

Solving for a

\displaystyle a=\frac{2x}{t^2}

\displaystyle a=\frac{2\cdot 10}{5.12^2}

a=0.763\ m/s^2

Now we analyze the geometric of the forces applied to the box. Please refer to the free body diagram provided below.

The forces in the y-axis must be in equilibrium since no movement takes place there, thus, being g the acceleration of gravity:

T_y+N=m.g

There Ty is the vertical component of the tension of the rope, N is the normal force, and m is the mass of the box

The decomposition of T gives us

T_y=Tsin\theta

T_x=Tcos\theta

Solving the above equation for N

Tsin\theta+N=m.g

N=m.g-Tsin\theta\text{..........[1]}

Now for the x-axis, there are two forces acting on the box, the x-component of the tension and the friction force Fr. Those forces are not equilibrated, thus acceleration is produced:

Tcos\theta-F_r=m.a

Recalling that

F_r=\mu N

Tcos\theta-\mu N=m.a

Replacing N from [1]

Tcos\theta-\mu (m.g-Tsin\theta)=m.a

Operating

Tcos\theta-\mu m.g+\mu Tsin\theta=m.a

Solving for T

T(cos\theta+\mu sin\theta)=m.a+\mu m.g

\displaystyle T=\frac{m.a+\mu m.g}{cos\theta+\mu sin\theta}

\displaystyle T=m\frac{a+\mu g}{cos\theta+\mu sin\theta}

We don't know the value of m, thus we'll plug in the rest of the data

\displaystyle T=m\frac{0.763+0.10\cdot 9.8}{cos36.8^o+0.10 sin36.8^o}

T=2.0252m

Dividing by the weight of the box m.g

T/(m.g)=2.0252/9.8=0.2066

Thus, the magnitude of the pulling force is 20.66% of the gravitational force acting on the box

You might be interested in
Gayle runs at a speed of 3.85 m/s and dives on a sled, initially at rest on the top of a frictionless snow-covered hill. After s
enot [183]

Answer:

Final velocity at the bottom of hill is 15.56 m/s.

Explanation:

The given problem can be divided into four parts:

1. Use conservation of momentum to determine the speed of the combined mass (Gayle and sled)

From the law of conservation of momentum (perfectly inelastic collision), the combined velocity is given as:  

p_i = p_f  

m_1u_1 + m_2v_2 = (m_1 + m_2)v

v = \frac{(m_1u_1 + m_2v_2)}{(m_1 + m_2)}

v=\frac{[50.0\ kg)(3.85\ m/s) + 0]}{(50.0\ kg + 5.00\ kg)}= 3.5\ m/s  

2. Use conservation of energy to determine the speed after traveling a vertical height of 5 m.

The velocity of Gayle and sled at the instant her brother jumps on is found from the law of conservation of energy:  

E(i) = E(f)  

KE(i) + PE(i) = KE(f) + PE(f)  

0.5mv^2(i) + mgh(i) = 0.5mv^2(f) + mgh(f)  

v(f) = \sqrt{[v^2(i) + 2g(h(i) - h(f))]}

Here, initial velocity is the final velocity from the first stage. Therefore:  

v(f) = \sqrt{[(3.5)^2+2(9.8)(5.00-0)]}= 10.5\ m/s

3. Use conservation of momentum to find the combined speed of Gayle and her brother.  

Given:

Initial velocity of Gayle and sled is, u_1(i)=10.5 m/s

Initial velocity of her brother is, u_2(i)=0 m/s

Mass of Gayle and sled is, m_1=55.0 kg

Mass of her brother is, m_2=30.0 kg

Final combined velocity is given as:

v(f) = \frac{[m_1u_1(i) + m_2u_2(i)]}{(m_1 + m_2)}  

v(f)=\frac{[(55.0)(10.5) + 0]}{(55.0+30.0)}= 6.79 m/s  

4. Finally, use conservation of energy to determine the final speed at the bottom of the hill.

Using conservation of energy, the final velocity at the bottom of the hill is:  

E(i) = E(f)  

KE(i) + PE(i) = KE(f) + PE(f)  

0.5mv^2(i) + mgh(i) = 0.5mv^2(f) + mgh(f)  

v(f) = \sqrt{[v^2(i) + 2g(h(i) - h(f))]} \\v(f)=\sqrt{[(6.79)^2 + 2(9.8)(15 - 5.00)]}\\v(f)= 15.56\ m/s

6 0
3 years ago
Which vector correctly indicates the direction of centripetal acceleration experienced by the car?
Viktor [21]

Answer:

where is the answers ??

is there any answer called upward pointing arrow .

4 0
3 years ago
Which measurement can be constant (unchanging)?
katrin2010 [14]
I think it is Velocity
6 0
3 years ago
Give reasons why we cannot hear the sound from the space?
Tanya [424]

Because air does not exist in space

5 0
3 years ago
Suppose that a block is pulled 16 meters across a floor. What amount of work is done if the force used to drag the block is 22 N
gizmo_the_mogwai [7]

wouldn't it be 22 divided by 16? i got 1.4

8 0
3 years ago
Other questions:
  • Where a subducting plate slides beneath the lithosphere, melting takes place and a(n) ____ is created?
    9·1 answer
  • Can someone please answer 9 and 10.
    9·1 answer
  • You are sitting in a car that isn't moving; suddenly, the car quickly accelerates. your body seems to be pushed back against the
    5·2 answers
  • The _____ usually occur in nature as combined elements.
    7·1 answer
  • The work that must be done by an external agent to move a point charge of 2 mC from the origin
    8·1 answer
  • Which one of the following statements concerning the electric dipole moment is false?
    11·1 answer
  • Which process occurs when ocean waves drop seashells on a beach
    15·1 answer
  • Read the list of phrases from the article.
    9·1 answer
  • What are examples of water on Earth that are part of the water cycle
    7·1 answer
  • A body weighing 108N moves with seed of 5ms–¹ in a horizontal circular path of radius 5m. Calculate the magnitude of the centrip
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!