The acceleration is the change of speed/velocity over time. Thus to calculate this you do (V1-V2)/T or (11.2-9.6)/4 or 0.4 m/s^2
Answer:
(The first law of thermodynamics) When you put a hot object in contact with a cold one, heat will flow from the warmer to the cooler. As a result, the warmer one will usually cool down and the cooler one will usually warm up. Eventually, they will reach the same temperature and heat flow will stop.
D, it is considered unethical today
Answer:
A)
0.395 m
B)
2.4 m/s
Explanation:
A)
= mass of the cart = 1.4 kg
= spring constant of the spring = 50 Nm⁻¹
= initial position of spring from equilibrium position = 0.21 m
= initial speed of the cart = 2.0 ms⁻¹
= amplitude of the oscillation = ?
Using conservation of energy
Final spring energy = initial kinetic energy + initial spring energy

B)
= mass of the cart = 1.4 kg
= spring constant of the spring = 50 Nm⁻¹
= amplitude of the oscillation = 0.395 m
= maximum speed at the equilibrium position
Using conservation of energy
Kinetic energy at equilibrium position = maximum spring potential energy at extreme stretch of the spring

Answer:
Mass remains constant but weight reduces
Explanation:
Mass is the amount of matter in an object so whether on moon or any other planet, it does not change despite the changes in acceleration.
Weight is a product of mass and acceleration due to gravity, expressed as W=mg where m is the mass, W is weight and g is acceleration. From the above formula, it is evident that when you decrease g, then W also decreases while m is constant. Similarly, when m is constant and g is increased then W also increases.
Therefore, for this case, since g decreases, the weight decreases but mass remains constant.