Answer:
The units of the orbital period P is <em>years </em> and the units of the semimajor axis a is <em>astronomical units</em>.
Explanation:
P² = a³ is the simplified version of Kepler's third law which governs the orbital motion of large bodies that orbit around a star. The orbit of each planet is an ellipse with the star at the focal point.
Therefore, if you square the year of each planet and divide it by the distance that it is from the star, you will get the same number for all the other planets.
Thus, the units of the orbital period P is <em>years </em> and the units of the semimajor axis a is <em>astronomical units</em>.
Answer:
This would happen.
Explanation:
If the earth’s rotation speed increases then the weight of the body decreases. This is because you see a moving body on the rotating earth’s surface itself is in the reference frame. So when the earth rotates, the centripetal force acts towards the centre of rotation.
Answer:
Relativistic velocity is of the order of 1/10th of the velocity of light
Explanation:
We define relativistic speed (or velocity) as a speed that is a significant fraction of the speed of light: c = 3*10^8 m/s
Such that for these speeds, the special relativity theory starts to apply (the relativity effects starts to apply).
Usually, we define relativistic speeds as those that are of the order (or larger) of c/10, which is one-tenth of the speed of light.
Then the correct option is C:
Relativistic velocity is of the order of 1/10th of the velocity of light