1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Marat540 [252]
3 years ago
5

A charged capacitor is connected to an ideal inductor. At time t = 0, the charge on the capacitor is equal to 6.00 μC. At time t

= 2.00 ms the charge on the capacitor is zero for the first time. What is the amplitude of the current at that same instant?
Physics
1 answer:
Len [333]3 years ago
8 0

Answer:

4.71\times 10^{-3}A

Explanation:

Q_{max} = Maximum charge stored by capacitor = 6 μC = 6 x 10⁻⁶ C

t  = time taken for charge on the capacitor to become zero = 2 ms = 2 x 10⁻³ s

Time period is given as

T = 4t

T = 4(2\times 10^{-3})

T = 8\times 10^{-3} s

Angular frequency is given as

w = \frac{2\pi }{T}

w = \frac{2(3.14) }{8\times 10^{-3}}

w =785 rad/s

Charge at any time is given as

Q(t) = Q_{max}Coswt

Taking derivative both side relative to "t"

\frac{\mathrm{d}Q(t) }{\mathrm{d} t} = \frac{\mathrm{d}(Q_{max}Coswt) }{\mathrm{d} t}

i(t)= -Q_{max} w Sinwt

Amplitude of the current is given as

i_{max}= Q_{max} w

i_{max}= (6\times 10^{-6}) (785)

i_{max}= 4.71\times 10^{-3}A

You might be interested in
A pulley system lifts a 1345 n weight a distance of 0.975m. Paul pulls the rope a distance of 3.90m, exerting a force of 375N. A
Rashid [163]

A. IMA: 4

The Ideal Mechanical Advantage (IMA) is given by:

IMA = \frac{d_i}{d_o}

where

d_i is the input distance

d_o is the output distance

For the pulley system in this problem, d_i = 3.90 m and d_o = 0.975 m, so the IMA is

IMA=\frac{3.90 m}{0.975 m}=4


B. MA: 3.59

The actual mechanical advantage (AMA), or simply the Mechanical Advantage (MA), is given by

MA=\frac{F_o}{F_i}

where F_o is the output force and F_i is the input force. For the pulley system in this problem, F_i = 375 N and F_o = 1345 N, so the MA is

MA=\frac{1345 N}{375 N}=3.59


C. Efficiency: 89.8 %

The efficiency of a machine is equal to the ratio between the MA and the AMA:

\eta = \frac{MA}{AMA} \cdot 100

Therefore, in this case,

\eta=\frac{3.59}{4}\cdot 100=0.898=89.8 \%

3 0
3 years ago
Which of the following is fact-based science rather than part of a personal belief system?
marusya05 [52]
Since there are no choices, then this question calls for open-ended answers. Facts-based science must have proven underlying laws that support inferences such as Coulomb's Law, Kinetic Theory of Matter and many more. On the other hand, examples of science that focus on personal belief is philosophy. This depends on the perspective of known philosophers. An example would be Sigmund Freud who proposed the theory of 3 personalities. Although it is more on personal beliefs, this is used as a foundation in the study of psychology.
3 0
3 years ago
A reasonable estimate of the moment of inertia of an ice skater spinning with her arms at her sides can be made by modeling most
Oxana [17]

Answer:

A)  I_{total} = 1.44 kg m², B) moment of inertia must increase

Explanation:

The moment of inertia is defined by

     I = ∫ r² dm

For figures with symmetry it is tabulated, in the case of a cylinder the moment of inertia with respect to a vertical axis is

      I = ½ m R²

A very useful theorem is the parallel axis theorem that states that the moment of inertia with respect to another axis parallel to the center of mass is

    I = I_{cm} + m D²

Let's apply these equations to our case

The moment of inertia is a scalar quantity, so we can add the moment of inertia of the body and both arms

      I_{total}=I_{body} + 2 I_{arm}

       I_{body} = ½ M R²

The total mass is 64 kg, 1/8 corresponds to the arms and the rest to the body

       M = 7/8 m total

       M = 7/8 64

       M = 56 kg

The mass of the arms is

      m’= 1/8 m total

      m’= 1/8 64

      m’= 8 kg

As it has two arms the mass of each arm is half

     m = ½ m ’

     m = 4 kg

The arms are very thin, we will approximate them as a particle

    I_{arm} = M D²

Let's write the equation

     I_{total} = ½ M R² + 2 (m D²)

Let's calculate

    I_{total} = ½ 56 0.20² + 2 4 0.20²

    I_{total} = 1.12 + 0.32

    I_{total} = 1.44 kg m²

b) if you separate the arms from the body, the distance D increases quadratically, so the moment of inertia must increase

6 0
3 years ago
A 65 kg person jumps from a window to a fire net 18 m below, which stretches the net 1.1 m. Assume the net behaves as a simple s
posledela

Answer:

0.03167 m

1.52 m

Explanation:

x = Compression of net

h = Height of jump

g = Acceleration due to gravity = 9.81 m/s²

The potential energy and the kinetic energy of the system is conserved

P_i=P_f+K_s\\\Rightarrow mgh_i=-mgx+\frac{1}{2}kx^2\\\Rightarrow k=2mg\frac{h_i+x}{x^2}\\\Rightarrow k=2\times 65\times 9.81\frac{18+1.1}{1.1^2}\\\Rightarrow k=20130.76\ N/m

The spring constant of the net is 20130.76 N

From Hooke's Law

F=kx\\\Rightarrow x=\frac{F}{k}\\\Rightarrow x=\frac{65\times 9.81}{20130.76}\\\Rightarrow x=0.03167\ m

The net would strech 0.03167 m

If h = 35 m

From energy conservation

65\times 9.81\times (35+x)=\frac{1}{2}20130.76x^2\\\Rightarrow 10065.38x^2=637.65(35+x)\\\Rightarrow 35+x=15.785x^2\\\Rightarrow 15.785x^2-x-35=0\\\Rightarrow x^2-\frac{200x}{3157}-\frac{1000}{451}=0

Solving the above equation we get

x=\frac{-\left(-\frac{200}{3157}\right)+\sqrt{\left(-\frac{200}{3157}\right)^2-4\cdot \:1\left(-\frac{1000}{451}\right)}}{2\cdot \:1}, \frac{-\left(-\frac{200}{3157}\right)-\sqrt{\left(-\frac{200}{3157}\right)^2-4\cdot \:1\left(-\frac{1000}{451}\right)}}{2\cdot \:1}\\\Rightarrow x=1.52, -1.45

The compression of the net is 1.52 m

4 0
3 years ago
"Your are flying in Class C airspace and the controller says, "radar service is terminated". What should the transponder be set
EleoNora [17]

Answer:

Who knows

Explanation:

8 0
3 years ago
Other questions:
  • A closed system is BEST described as
    5·1 answer
  • What is the absolute value of the horizontal force that each athlete exerts against the ground?
    10·1 answer
  • True or False: If a point charge has electric field lines that point into it, the charge must be positive.
    5·1 answer
  • 1 liter= 10 cubic centimeters?
    12·1 answer
  • A race car traveling at 10. meters per second accelerates at the rate of 1.5 meters per seconds while traveling a distance of 7,
    13·2 answers
  • List at least three practices that have resulted from the impact factor. Argue which of these is most problematic and explain wh
    7·1 answer
  • Velocity is the slope of the acceleration vs. time graph.<br> A.) True<br> B.)False<br> (apex)
    14·2 answers
  • gAn Olympic diver is on a diving platform 5.40 m above the water. To start her dive, she runs off of the platform with a speed o
    5·1 answer
  • 6. A baseball player leads off the game and hits a long home run. The ball leaves the bat at an angle
    10·1 answer
  • A 300-kg bear grasping a vertical tree slides down at constant velocity. the friction force between the tree and the bear is:___
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!