Passengers in an aircraft are subject to the Normal and Gravity Force acting on them at a low 'orbit', so tiny that it can be many times compared to the same surface of the earth when speaking in general terms.
In a high orbit space vehicle or in the same space, said force decreases considerably or simply disappears, generating the sensation of weightlessness.
Remember that the Force of Gravity is given under the principle

Where,
G = Gravitational Universal constant
M = Mass of the planet
m = mass of the object
r = Distance from center of the planet
When the radius grows considerably the gravitational force begins to decrease.
Answer:
Zero
Explanation:
W = F × s
F = 10 N,
t = 3min = 180sec
s = 0( no change in postion)
W = 10 ×0
W = 0
Answer:
t = 5.05 s
Explanation:
This is a kinetic problem.
a) to solve it we must fix a reference system, let's use a fixed system on the floor where the height is 0 m
b) in this system the equations of motion are
y = v₀ t + ½ g t²
where v₀ is the initial velocity that is v₀ = 0 and g is the acceleration of gravity that always points towards the center of the Earth
e) y = 0 + ½ g t²
t = √ (2y / g)
t = √(2 125 / 9.8)
t = 5.05 s
Answer:
Astronomer
Explanation:
A scientist who studies the objects in the sky, including planets, galaxies, black holes, and stars, is called an astronomer. These days, the terms astronomer and astrophysicist are used interchangeably, to talk about any physicist who specializes in celestial bodies and the forces that affect them.