Let say the point is inside the cylinder
then as per Gauss' law we have

here q = charge inside the gaussian surface.
Now if our point is inside the cylinder then we can say that gaussian surface has charge less than total charge.
we will calculate the charge first which is given as


now using the equation of Gauss law we will have


now we will have

Now if we have a situation that the point lies outside the cylinder
we will calculate the charge first which is given as it is now the total charge of the cylinder


now using the equation of Gauss law we will have


now we will have
Answer:
Right to left
Explanation:
From right hand thumb rule, the magnetic field at the centre of loop points out of the plane of paper. Thus the straight wire current should create magnetic field into the plane of paper at the centre. Hence the direction of current in long wire should be from right to left
<span>The SLOPE of a position-time graph represents an object’s SPEED.
It's not possible to tell the object's velocity from the graph, because
the graph doesn't show anything about what direction the object is
moving, and you need to know the direction in order to know the velocity. </span>
India's monsoon area i beleive