1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
melomori [17]
2 years ago
5

100 points!! word bank!

Physics
1 answer:
Novosadov [1.4K]2 years ago
6 0

Answer:

Except in the crust, the interior of the Earth cannot be studied by drilling holes to take samples. Instead, scientists map the interior by watching how seismic waves from earthquakes are bent, reflected, sped up, or delayed by the various layers.

Explanation:

You might be interested in
A 0. 060-kg tennis ball, moving with a speed of 5. 82 m/s , has a head-on collision with a 0. 090-kg ball initially moving in th
inn [45]

Final speed of the tennis ball, moving with a speed of 5. 82 m/s , has a head-on collision with a 0. 090-kg ball is 2.964 m/s.

<h3>What is conservation of momentum?</h3>

Momentum of an object is the force of speed of it in motion. Momentum of a moving body is the product of mass times velocity. By the law of conservation of momentum,

m_1u_1 + m_2u_2 = (m_1+m_2)v

Here, (m) is the mass, (u) is initial velocity before collision, v is final velocity after collision and (subscript 1, and 2) are used for body 1 and 2 respectively. Rewrite the formula for final velocity as,

v=\dfrac{m_1u_1 + m_2u_2}{(m_1+m_2)}

A 0. 060-kg tennis ball, moving with a speed of 5. 82 m/s, has a head-on collision with a 0. 090-kg ball, initially moving in the same direction at a speed of 3.44 m/s. Thus, the initial velocity of the second ball is,

v_{2f}=5.82+3.44+v_{1f}\\v_{2f}=2.38+v_{1f}

Let v1f is the final velocity of first ball. Thus, the initial velocity of the first ball is,

v_{1f}=\dfrac{(0.060)(5.82) + (0.090)(3.44-2.38)}{(0.060)+(0.090)}\\v_{1f}=2.964\rm\; m/s

Thus, final speed of the tennis ball, moving with a speed of 5. 82 m/s , has a head-on collision with a 0. 090-kg ball is 2.964 m/s.

Learn more about the conservation of momentum here;

brainly.com/question/7538238

#SPJ4

4 0
1 year ago
Copper exists in nature as two isotopes. The atomic masses and relative abundance of these isotopes is given in the table. What
Alona [7]
<span>The correct answer should be B) 63.55. That's because the most precise number is 63.546, but you would write 55 because 46 is rounded that way in the equation. The others are a bit higher, while E is a completely different element, Iodine. This isn't the most precise piece of data because in reality there would be a slight differentiation of +- 0,003u</span>
7 0
3 years ago
A tennis player strikes a tennis ball from underneath with her racket. The ball is sent straight up with an initial velocity of
Stels [109]
So the acceleration of gravity is 9.8 m/s so that’s how quickly it will accelerate downwards. You can use a kinematic equation to determine your answer. We know that initial velocity was 19 m/s, final velocity must be 0 m/s because it’s at the very top, and the acceleration is -9.8 m/s. You can then use this equation:

Vf^2=Vo^2+2ax

Plugging in values:

361=19.6x

X=18 m
6 0
2 years ago
A proton is released from rest at the positive plate of a parallelplatecapacitor. It crosses the capacitor and reaches the negat
Triss [41]

Answer:

2.1406 ×10^6 m/sec

Explanation:

we know that energy is always conserved

so from the law of energy conservation

qV=\frac{1}{2}mv^2

here V is the potential difference  

we know that mass of proton = 1.67×10^{-27} kg

we have given speed =50000m/sec

so potential difference V=\frac{\frac{1}{2}\times 1.67\times 10^{-27}50000^2}{1.6\times 10^{-19}}=13.045

now mass of electron =9.11×10^{-31}

so for electron

\frac{1}{2}\times 9.11\times 10^{-31}v^2=1.6\times 10^{-19}\times 13.045=2.1406\times 10^6 m/sec

so the velocity of electron will be 2.1406×10^6 m/sec

4 0
3 years ago
Question 4 - If Angelica starts out at 30m/s, and in 16 s speeds up to 84 m/s, what is her acceleration?
Triss [41]

Answer:

C. 3.375 m/s^2

Explanation:

The acceleration of an object can be found using the equation:

a=\frac{v-u}{t}

where

v is the final velocity

u is the initial velocity

t is the time it takes for the velocity to change from u to v

In this problem:

u = 30 m/s is the initial velocity of Angelica

v = 84 m/s is the final velocity

t is the time

Substituting into the equation, we find the acceleration:

a=\frac{84-30}{16}=3.375 m/s^2

4 0
3 years ago
Other questions:
  • What is the base matterial for plastic wrap
    10·1 answer
  • Please help. Brainliest will be given! 25 points. Show all work.
    5·1 answer
  • Jeff's body contains about 5.12 L5.12 L of blood that has a density of 1060 kg/m3.1060 kg/m3. Approximately 45.0%45.0% (by mass)
    10·1 answer
  • 4. A solution that contains a large amount of salt and a small amount of water is said to be a _______ solution.
    15·1 answer
  • What do you guys know about thermal energy please explain it in the easiest way possible I'm not very smart :(
    14·1 answer
  • (03.02 MC) Two students made the following statements to describe atmospheric conditions at a location. Student A: This area has
    9·1 answer
  • Fill in the term to complete each sentence
    8·2 answers
  • Now, a second resistor R2 of 3.3 105 Ω is connected in parallel to the existing resistor in the circuit, and a second capacitor
    13·1 answer
  • Light of wavelength 550 nm comes into a thin slit and produces a diffraction pattern on a board 8.0 m away. The first minimum da
    12·1 answer
  • Two uniform solid spheres of the same size, but different mass, are released from rest simultaneously at the same height on a hi
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!