The only 'difference' is that they are different categories.
It's like asking "What's the difference between Susie and girl ?"
Or "What's the difference between Cadillac and car ?"
Displacement <em>IS</em> a vector quantity.
#1
As we are increasing the frequency in the simulation the wavelength is decreasing
So if speed remains constant then wavelength and frequency depends inversely on each other
If we are in boat and and moving over very small wavelengths then these small wavelength will be encountered continuously by the boat in short interval of times
#2
As we are changing the amplitude in the simulation there is no change in the speed frequency and wavelength.
So amplitude is independent of all these parameter
Amplitude of wave will decide the energy of wave
So light of greater intensity is the light of larger amplitude
#3
In our daily life we deal with two waves
1 sound waves
2 light waves
Answer:
♕ 
☃ 
- Frequency ( f ) = 7 Hertz
- Wavelength ( λ ) = 42m
♨ 
☄ 
✧ 
~Plug the known values and then multiply!
↦ 
↦ 
☥ 
---------------------------------------------------------------
❁ 
- Frequency ( f ) : The number of complete waves , set up in a medium in one second is called frequency of the wave. The SI unit of frequency is Hertz ( Hz ). For example : if a sound wave completes 15 compressions and 15 rarefactions in one second , it's frequency is 15 Hz.
- Wavelength ( λ ) : The distance between two consecutive troughs or crests in a transverse wave or the distance between two consecutive compressions or rarefactions in a longitudinal wave us called wavelength. It is the distance travelled by a wave in a time equal to it's time period. It's SI unit is metre ( m ).
- Wave velocity ( v ) : The velocity with which a wave propagates in a medium is called wave velocity. It's SI unit is m/s.
# KILL : Excuses
KISS : Opportunities
MARRY : Goals
♪ Hope I helped! ♡
☂ Have a wonderful day / night ! ツ
✎
✔
▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁
Answer:
Dont worry ,
One day you will find the love of your life
Explanation:
Answer:
It is an SI unit
Explanation:
The metre is defined as the length of the path travelled by light in a vacuum in 1299 792 458 of a second. The metre was originally defined in 1793 as one ten-millionth of the distance from the equator to the North Pole