Answer:
Explanation:
By moving weather systems quickly
I think this is correct
Tin is an element called Stannum and has the symbol Sn. Molar mass is the mass of 1 mol of a compound, 1 mol of any substance is made of 6.022 x 10²³ units, these units could be atoms making up an element or molecules making up a compound.
While the number of atoms making up 1 mol is the same for any element, the weight of 1 mol of substance varies from one another.
In tin(Sn) molar mass - 118.71 g/mol
In 118.71 g - there's 1 mol of tin
therefore in 37.6 g of tin - 1 x 37.6 / 118.71 = 0.31 mol
In 37.6 g of tin, there's 0.31 mol
<u>Answer:</u> The half life of the sample of silver-112 is 3.303 hours.
<u>Explanation:</u>
All radioactive decay processes undergoes first order reaction.
To calculate the rate constant for first order reaction, we use the integrated rate law equation for first order, which is:
![k=\frac{2.303}{t}\log \frac{[A_o]}{[A]}](https://tex.z-dn.net/?f=k%3D%5Cfrac%7B2.303%7D%7Bt%7D%5Clog%20%5Cfrac%7B%5BA_o%5D%7D%7B%5BA%5D%7D)
where,
k = rate constant = ?
t = time taken = 1.52 hrs
= Initial concentration of reactant = 100 g
[A] = Concentration of reactant left after time 't' = [100 - 27.3] = 72.7 g
Putting values in above equation, we get:

To calculate the half life period of first order reaction, we use the equation:

where,
= half life period of first order reaction = ?
k = rate constant = 
Putting values in above equation, we get:

Hence, the half life of the sample of silver-112 is 3.303 hours.
Run it up by nav and lemonade by dont oliver
<span>The action that researchers take to make advances in science would be conducting experiments to test their hypothesis. By doing such, they are able to know whether the hypothesis is true or not. Hope this answers the question. Have a nice day.</span>