Since valence shells in nonmetal atoms are almost full, the atoms attract electrons and hold them tightly to fill their valence shells.
2.2 moles of O2 will be produced by the decomposition of 4.4 moles of water.
Answer:
2.99×10²⁵ molecules of CO₂ are produced
Explanation:
Decomposition reaction is:
Ca(HCO₃)₂ => CaO(s) + 2CO₂(g) + H₂O(g)
Ratio is 1:2. Let's make a rule of three:
1 mol of bicarbonate can produce 2 moles of CO₂
Therefore, 24.9 moles of bicarbonate may produce, 49.8 moles (24.9 .2 )/1
Let's determine the number of molecules
1 mol has 6.02×10²³ molecules
49.8 moles must have (49.8 . 6.02×10²³) / 1 = 2.99×10²⁵ molecules
Answer:
See explanation
Explanation:
Many organic compounds have low melting points. This is due to the fact that many of these compounds are non polar.
However, compound X is slightly polar but still has a melting point which is far less than that of sand composed of a high melting point inorganic material.
Since sand has a much higher melting point compared to compound X, the researcher need not be worried that sand was spilled into his beaker.
Answer:
C
Explanation:
Alcohols are organic molecules characterized majorly by the presence of the OH group in their molecule. The OH group is majorly responsible for several of their characteristics. This include the formation of hydrogen bonds between alcohol molecules. While this makes them more inorganic than most organic compounds, comparatively the hydrogen bonding formed in alcohols is not as strong as that which is present in water.
The higher strength of the hydrogen bonding is responsible for some comparable properties. While water boils at a temperature of 100 degrees Celsius, alcohol boils at a temperature of 78 degrees Celsius. This is an evidence to the fact that hydrogen bonding in alcohol is less stronger that that in water.