The enthalpy of an intermediate step should be manipulated when used to produce an overall equation by using the Hess's law. You could multiply the enthalpy by -1 if this equation is reversed in theory.
His distance and displacement are the same, which was 400 m
<h3>Further explanation</h3>
Given
Distance = 400 m
time = 2 min
Required
Distance and displacement
Solution
Distance is a scalar quantity that indicates the length of the trajectory that is traveled by an object within a certain interval. Distance has no direction, only has magnitude
Can be simplified distance = totals traveled
Displacement is a vector quantity that shows changes in the position of objects in a certain interval of time. Displacement has magnitude and direction
Can be simplified displacement = distanced traveled from starting point to ending point
From the definition above shows that the displacement and the distance that he traveled have the same value (magnitude), which is equal to 400 m
The value of the two will be different if he starts and finishes at the same point, then the displacement value is zero while the distance he has traveled is still 0
Answer:
4.26 %
Explanation:
There is some info missing. I think this is the original question.
<em>Calculate the percent ionization of nitrous acid in a solution that is 0.249 M in nitrous acid. The acid dissociation constant of nitrous acid is 4.50 × 10
⁻⁴.</em>
<em />
Step 1: Given data
Initial concentration of the acid (Ca): 0.249 M
Acid dissociation constant (Ka): 4.50 × 10
⁻⁴
Step 2: Write the ionization reaction for nitrous acid
HNO₂(aq) ⇒ H⁺(aq) + NO₂⁻(aq)
Step 3: Calculate the concentration of nitrite in the equilibrium ([A⁻])
We will use the following expression.
![[A^{-} ] = \sqrt{Ca \times Ka } = \sqrt{0.249 \times 4.50 \times 10^{-4} } = 0.0106 M](https://tex.z-dn.net/?f=%5BA%5E%7B-%7D%20%5D%20%3D%20%5Csqrt%7BCa%20%5Ctimes%20Ka%20%7D%20%3D%20%5Csqrt%7B0.249%20%5Ctimes%204.50%20%5Ctimes%2010%5E%7B-4%7D%20%20%7D%20%3D%200.0106%20M)
Step 4: Calculate the percent ionization of nitrous acid
We will use the following expression.
![\alpha = \frac{[A^{-} ]}{[HA]} \times 100\% = \frac{0.0106M}{0.249} \times 100\% = 4.26\%](https://tex.z-dn.net/?f=%5Calpha%20%3D%20%5Cfrac%7B%5BA%5E%7B-%7D%20%5D%7D%7B%5BHA%5D%7D%20%5Ctimes%20100%5C%25%20%3D%20%5Cfrac%7B0.0106M%7D%7B0.249%7D%20%5Ctimes%20100%5C%25%20%3D%204.26%5C%25)
NaCl (Sodium chloride)
LiF (Lithium fluoride)