Answer:
Support at Cy = 1.3 x 10³ k-N
Support at Ay = 200 k-N
Explanation:
given:
fb = 300 k-N/m
fc = 100 k-N/m
D = 300 k-N
L ab = 6 m
L bc = 6 m
L cd = 6 m
To get the reaction A or C.
take summation of moment either A or C.
<em><u>Support Cy:</u></em>
∑ M at Ay = 0
(( x1 * F ) + ( D * Lab ) + ( D * L bc + D * L cd )
Cy = -------------------------------------------------------------------
( L ab + L bc )
Cy = 1.3 x 10³ k-N
<em><u>Support Ay:</u></em>
Since ∑ F = 0, A + C - F - D = 0
A = F + D - C
Ay = 200 k-N
Answer:
No, there won't be a collision.
Explanation:
We will use the constant acceleration formulas to calculate,
v = u + a*t
0 = 25 + (-0.1)*t
t = 250 seconds (the time taken for the passenger train to stop)
v^2 = u^2 + 2*a*s
0 = (25)^2 + 2*(-0.1)*s
s = 3125 m (distance traveled by passenger train to stop)
If the distance traveled by freight train in 250 seconds is less than (3125-200=2925 m) than the collision will occur
Speed*time = distance
Distance = (15)*(250)
Distance = 3750 m
As the distance is way more, there won’t be a collision
This question is incomplete because the options are missing; here is the complete question
The ozone layer is found in which layer of the atmosphere?
A. Stratosphere
B. Mesosphere
C. Thermosphere
D. Troposphere
The correct answer is A. Stratosphere
Explanation:
The ozone layer as indicated by its name is mainly composed of Ozone (O2), this layer is essential for life because it filters ultraviolet radiation and acts as a greenhouse effect gas by trapping part of the heat from the sun. Additionally, the ozone layer is located in the stratosphere, which is the second layer of the atmosphere and can be found between 20 km to 50 km from Earth's surface. Moreover, the existence of the ozone layer in the stratosphere makes the temperature increase with height due to the radiation of the sun filter by ozone.