Answer:
When Jill is pushing a box across a floor, it represents the upward motion and it is natural force is applied.
So it is represented as FN and normal force takes place in considering the force perpendicular to the floor.
It seems to support that forced applied on an object when the object is in contact with other.
Explanation:
The acceleration of the body is 2 m/s^2 while the deceleration is - 1.2 m/s^2.
<h3>
What is the acceleration?</h3>
Let us recall that the acceleration is the change in the speed of a body with time. We have been told that the body accelerates for 3s and then decelerates to 2s. This implies that the total time that the object spent in motion is 5 s.
Thus;
v = u + at
v = final velocity
u = initial velocity
a = acceleration
t = time taken
v - u/t = a
a = 6 - 0/3
= 2 m/s^2
Again;
v - u/t = a
a = 0 - 6/5
a = - 1.2m/s^2
Learn more about acceleration:brainly.com/question/12550364
#SPJ1
<h3 />
If the bag is motionless, then it's not accelerating up or down.
That fact right there tells you that the net vertical force on it
is zero. So the sum of any upward forces on it is exactly equal
to the downward gravitational force ... the bag's "weight".
If the bag is suspended from a single rope, then the tension
in the rope must be equal to the 100-N weight of the bag.
And if there are four ropes holding it up, then the sum of
the four tensions is 100N. If the ropes have been carefully
adjusted to share the load equally, then the tension is 25N
in each rope.
To solve this problem it is necessary to apply the concepts related to the principle of superposition and the equations of destructive and constructive interference.
Constructive interference can be defined as

Where
m= Any integer which represent the number of repetition of spectrum
= Wavelength
d = Distance between the slits.
= Angle between the difraccion paterns and the source of light
Re-arrange to find the distance between the slits we have,



Therefore the number of lines per millimeter would be given as



Therefore the number of the lines from the grating to the center of the diffraction pattern are 380lines per mm
Answer:
Force A=-−2,697.75 N
Force B=13, 488.75 N
Explanation:
Taking moments at point A, the sum of clockwise and anticlockwise moments equal to zero.
25 mg-20Fb=0
25*1100g=20Fb
Fb=25*1100g/20=1375g
Taking g as 9.81 then Fb=1375*9.81=13,488.75 N
The sum of upward and downward forces are same hence Fa=1100g-1375g=-275g
-275*9.81=−2,697.75. Therefore, force A pulls downwards
Note that the centre of gravity is taken to be half the whole length hence half of 50 is 25 m because center of gravity is always at the middle