For the first blank, that is the endoplasmic reticulum
For the second, it is lysosome
For the third blank, it is the cell membrane
For the fourth, sorry I don’t know this one
For the fifth, that is the vacuole
For the sixth, that is mitochondrion
For the seventh, that is Golgi body
And lastly the eighth, it is the nucleus
Sorry I did not know what the fourth was but everything else is good.
Well red blood cells carry oxygen to muscles
Circulatory system is probably the answer you are looking for.
Answer:
In the presence of a base, blue litmus paper will turn red........
The equilibrium constant of the reaction is 282. Option D
<h3>What is equilibrium constant?</h3>
The term equilibrium constant refers to the number that often depict how much the process is able to turn the reactants in to products. In other words, if the reactants are readily turned into products, then it follows that the equilibrium constant will be large and positive.
Concentration of bromine = 0.600 mol /1.000-L = 0.600 M
Concentration of iodine = 1.600 mol/1.000-L = 1.600M
In this case, we must set up the ICE table as shown;
Br2(g) + I2(g) ↔ 2IBr(g)
I 0.6 1.6 0
C -x -x +2x
E 0.6 - x 1.6 - x 1.190
If 2x = 1.190
x = 1.190/2
x = 0.595
The concentrations at equilibrium are;
[Br2] = 0.6 - 0.595 = 0.005
[I2] = 1.6 - 0.595 = 1.005
Hence;
Kc = [IBr]^2/[Br2] [I2]
Kc = ( 1.190)^2/(0.005) (1.005)
Kc = 282
Learn more about equilibrium constant:brainly.com/question/15118952
#SPJ1
Answer: The mole ratio of hydrogen to nitrogen is 3 mole: 1 mole, 3:1
Explanation:
•Mole ratios are determined using the coefficients of the substances in the balanced chemical equation. •Each coefficient represents the number of mole of each substance in the chemical reaction.
•The mole ratio can be determined by first writing out a balanced chemical equation for the reaction.
For this reaction the balanced chemical equation is
N2(g) + 3H2(g) ----> 2NH3(g)
1mol:3mol : 2mol
From the equation we can see that 1 mole of N2(g) reacts with 3 moles of H2(g) or 3 moles of H2(g) react with 1 mole of N2(g) to produce 2 moles of NH3(g).
Therefore, the mole ratio of hydrogen to nitrogen is 3 mole: 1 mole, 3:1