The electron is travelling with a velocity of 1.123 × 10⁷m/s if it has a wavelength of 8.20 km.
<h3>How to calculate velocity of an electron?</h3>
The velocity at which an electron travels can be calculated using the following formula:
λ = h/mv
Where;
- H = Planck's constant
- m = mass of electron
- v = velocity of electron
- λ = wavelength
- Planck's constant (h) = 6.626 × 10−³⁴ J⋅s.
- mass of electron (m) = 9.109 × 10−³¹ kg
- wavelength = 8200m
8200 = 6.626×10−³⁴ / 9.109 × 10−³¹V
8200 = 7.3 × 10-⁴V
V = 8200 ÷ 7.3 × 10-⁴
V = 1.123 × 10⁷m/s
Therefore, the electron is travelling with a velocity of 1.123 × 10⁷m/s if it has a wavelength of 8.20 km.
Learn more about velocity at: brainly.com/question/13171879
#SPJ1
Answer:
The first condition is that ocean waters must be above 26 degrees Celsius (79 degrees Fahrenheit). Below this threshold temperature, hurricanes will not form or will weaken rapidly once they move over water below this threshold.
To work this out you do 400÷20=20
B I hope it’s right I don’t really help a lot but yeah lol
Answer: The pair that consists of a base and its conjugate acid in that order.
Explanation:
According to the Bronsted-Lowry conjugate acid-base theory, an acid is defined as a substance which looses donates protons and thus forming conjugate base and a base is defined as a substance which accepts protons and thus forming conjugate acid.



is gaining a proton, thus it is considered as a brønsted-lowry base and after gaining a proton, it forms
which is a conjugate acid.