Answer:
right now I can't tell you the answer but I can tell you that try to find the elements ,that have the same amount of those electrons
Explanation:
hope this helps it's what I can help you right now
<u>Answer:</u> The number of electrons for n = 0, 1 and 2 are 2, 6 and 10 respectively.
<u>Explanation:</u>
Huckel's rule is used to determine the aromaticity in a compound. The number of delocalized
electrons are calculated by using the equation:

where,
n = 0 or any whole number
- Calculating the value of electrons for n = 0
Putting values in above equation, we get:

- Calculating the value of electrons for n = 1
Putting values in above equation, we get:

- Calculating the value of electrons for n = 2
Putting values in above equation, we get:

Hence, the number of electrons for n = 0, 1 and 2 are 2, 6 and 10 respectively.
Answer:
conductors
Explanation:
Because they consist of lattice of atoms with free electrons and these free electrons allows current to flow through.
The volume of 0. 250 mole sample of
gas occupy if it had a pressure of 1. 70 atm and a temperature of 35 °C is 3.71 L.
Calculation,
According to ideal gas equation which is known as ideal gas law,
PV =n RT
- P is the pressure of the hydrogen gas = 1.7 atm
- Vis the volume of the hydrogen gas = ?
- n is the number of the hydrogen gas = 0.25 mole
- R is the universal gas constant = 0.082 atm L/mole K
- T is the temperature of the sample = 35°C = 35 + 273 = 308 K
By putting all the values of the given data like pressure temperature universal gas constant and number of moles in equation (i) we get ,
1.7 atm×V = 0.25 mole ×0.082 × 208 K
V = 0.25 mole ×0.082atm L /mole K × 308 K /1.7 atm
V = 3.71 L
So, volume of the sample of the hydrogen gas occupy is 3.71 L.
learn more about ideal gas equation
brainly.com/question/4147359
#SPJ4