3.37 x 10¹⁰ molecules
Explanation:
Given parameters:
Volume of water = 1pL = 1 x 10⁻¹²L
Density of water = 1.00g/mL = 1000g/L
Unknown:
Number of water molecules = ?
Solution:
To solve this problem, we first find the mass of the water molecule in the inkjet.
Mass of water = density of water x volume of water
Then, the number of molecules can be determined using the expression below:
number of moles = 
Number of molecules = number of moles x 6.02 x 10²³
Solving:
Mass of water = 1 x 10⁻¹² x 1000 = 1 x 10⁻⁹g
Number of moles:
Molar mass of H₂O = 2 + 16 = 18g/mol
Number of moles =
= 5.6 x 10⁻¹⁴moles
Number of molecules = 5.6 x 10⁻¹⁴ x 6.02 x 10²³ = 33.7 x 10⁹
= 3.37 x 10¹⁰ molecules
Learn more:
Number of molecules brainly.com/question/4597791
#learnwithBrainly
<u>Answer:</u> The structure of the geometrical isomers are attached below.
<u>Explanation:</u>
Cis- and Trans- isomers are the geometrical isomers which have same chemical formula but different structural formula
According to CIP rule, the groups on the doubly bonded carbon atoms are given priorities based on the the atomic masses of first connected atom.
If the highest priority groups are on the same side, it is known as cis-form and if the highest priority groups are on opposite side, it is known as trans-form.
We are given a chemical compound, which is 2-pentene.
In this the highest priority groups are methyl and ethyl groups.
When the groups are on the same side, it forms cis-form and when the groups are on the opposite side, it forms trans-form
The structure of the geometrical isomers are attached below.
Answer:

Explanation:
We are asked to find the mass of a sample of metal. We are given temperatures, specific heat, and joules of heat, so we will use the following formula.

The heat added is 4500.0 Joules. The mass of the sample is unknown. The specific heat is 0.4494 Joules per gram degree Celsius. The difference in temperature is found by subtracting the initial temperature from the final temperature.
- ΔT= final temperature - initial temperature
The sample was heated <em>from </em> 58.8 degrees Celsius to 88.9 degrees Celsius.
- ΔT= 88.9 °C - 58.8 °C = 30.1 °C
Now we know three variables:
- Q= 4500.0 J
- c= 0.4494 J/g°C
- ΔT = 30.1 °C
Substitute these values into the formula.

Multiply on the right side of the equation. The units of degrees Celsius cancel.

We are solving for the mass, so we must isolate the variable m. It is being multiplied by 13.52694 Joules per gram. The inverse operation of multiplication is division, so we divide both sides by 13.52694 J/g

The units of Joules cancel.


The original measurements have 5,4, and 3 significant figures. Our answer must have the least number or 3. For the number we found, that is the ones place. The 6 in the tenth place tells us to round the 2 up to a 3.

The mass of the sample of metal is approximately <u>333 grams.</u>
<span> When an </span>acid and a base<span> are placed together, they </span>react<span> to neutralize the </span>acid<span> and </span>base<span> properties, producing a salt. The H(+) cation of the </span>acid<span>combines with the OH(-) anion of the </span>base<span> to form water.</span>