Non metals and metollids in periodic tables are the same how this helps ;)
6.52 × 10⁴ L. (3 sig. fig.)
<h3>Explanation</h3>
Helium is a noble gas. The interaction between two helium molecules is rather weak, which makes the gas rather "ideal."
Consider the ideal gas law:
,
where
is the pressure of the gas,
is the volume of the gas,
is the number of gas particles in the gas,
is the ideal gas constant, and
is the absolute temperature of the gas in degrees Kelvins.
The question is asking for the final volume
of the gas. Rearrange the ideal gas equation for volume:
.
Both the temperature of the gas,
, and the pressure on the gas changed in this process. To find the new volume of the gas, change one variable at a time.
Start with the absolute temperature of the gas:
,
.
The volume of the gas is proportional to its temperature if both
and
stay constant.
won't change unless the balloon leaks, and- consider
to be constant, for calculations that include
.
.
Now, keep the temperature at
and change the pressure on the gas:
,
.
The volume of the gas is proportional to the reciprocal of its absolute temperature
if both
and
stays constant. In other words,
(3 sig. fig. as in the question.).
See if you get the same result if you hold
constant, change
, and then move on to change
.
Answer:
20.11 g.
Explanation:
What is given?
c (specific heat of iron) = 0.450 J/g °C.
Q (heat energy) = 179.85 J.
ΔT (change of temperature) = |31.42 °C - 51.29 °C| = 19.87 °C.
What do we need? Mass of iron (m)
Step-by-step solution:
Let's see the formula of specific heat:

Where c is specific heat, Q is heat energy, m is mass and ΔT is the change of temperature.
We just have to solve for 'm' to find the mass of iron and replace the given data that we have, like this:

The mass of the iron would be 20.11 g.