Answer: 0.258
Explanation:
The resistance
of a wire is calculated by the following formula:
(1)
Where:
is the resistivity of the material the wire is made of. For aluminium is
and for copper is 
is the length of the wire, which in the case of aluminium is
, and in the case of copper is 
is the transversal area of the wire. In this case is a circumference for both wires, so we will use the formula of the area of the circumference:
(2) Where
is the diameter of the circumference.
For aluminium wire the diameter is
and for copper is 
So, in this problem we have two transversal areas:
<u>For aluminium:</u>

(3)
<u>For copper:</u>

(4)
Now we have to calculate the resistance for each wire:
<u>Aluminium wire:</u>
(5)
(6) Resistance of aluminium wire
<u>Copper wire:</u>
(6)
(7) Resistance of copper wire
At this point we are able to calculate the ratio of the resistance of both wires:
(8)
(9)
Finally:
This is the ratio
The answer is D) <span>The molecular movement in the first rod transferred energy to the molecules in the second.</span>
The speed of the water in the wider part will be 1.194 m/sec. Speed is a time-based quantity. Its SI unit is m/sec.
<h3> What is speed?</h3>
Speed is defined as the rate of change of the distance or the height attained.
The given data in the problem is;
The initial diameter is,
initial radius,

The initial crossection area;

The final crossection area;

The initial flow rate is;
R = density ×velocity ×area

The speed of the water in the wider part will be;
From the continuity equation;

Hence, the speed of the water in the wider part will be 1.194 m/sec.
To learn more about the speed, refer to the link;
brainly.com/question/7359669
#SPJ1
Answer:
A total of 150 joules of work was done
Explanation:
Answer:
If the mass of B is m and the temperature change is the same, the mass of B will be 2m.
Explanation:
Q = mcT
T = mc/Q
M = 4Q/2cT........... (1)
T = Q/mc
Plug this in equation 1.
M = 4Q/(2c × Q/mc) = 4Q ÷ 2Q/m = 4Q × m/2Q = 2m