Answer:
A)
0.395 m
B)
2.4 m/s
Explanation:
A)
= mass of the cart = 1.4 kg
= spring constant of the spring = 50 Nm⁻¹
= initial position of spring from equilibrium position = 0.21 m
= initial speed of the cart = 2.0 ms⁻¹
= amplitude of the oscillation = ?
Using conservation of energy
Final spring energy = initial kinetic energy + initial spring energy

B)
= mass of the cart = 1.4 kg
= spring constant of the spring = 50 Nm⁻¹
= amplitude of the oscillation = 0.395 m
= maximum speed at the equilibrium position
Using conservation of energy
Kinetic energy at equilibrium position = maximum spring potential energy at extreme stretch of the spring

B. By vibrations in wires or strings
Answer:
30 degrees Celsius
Explanation:
With unsaturated adiabatic lapse rate water vapour does not have to change state from gaseous to liquid.
Answer: 4.0024 x 10^ -11 m or 0.040024 nm
Explanation:
λ = h c/ΔE
λ = wave lenght
h = 6.626 x 10 ^ -34 m² kg /s = planck constant
ΔE = 31 keV potential ( 1 keV = 1.6021 x 10^-16J)
c = velocity of light = 3 x 10⁸ m/s
substitute gives
λ = <u>6.626 x 10 ^ -34 m² kg /s x 3 x 10⁸ m/s</u> = 4.0024 x 10^ -11 m
31 x 1.6021x10^-16 J