Answer:
R = 0.0015Ω
Explanation:
The formula for calculating the resistivity of a material is expressed as;
ρ = RA/l
R is the resistance
ρ is the resistivity
A is the area of the wire
l is the length of the wire
Given
l = 85cm = 0.85m
A = πr²
A = 3.14*0.0018²
A = 0.0000101736m²
ρ = 1.75 × 10-8Ωm.
Substitute into the formula
1.75 × 10-8 = 0.0000101736R/0.85
1.4875× 10-8 = 0.0000101736R
R = 1.4875× 10-8/0.0000101736
R = 0.0015Ω
The sun heats the Earth through the process of radiation.
Hope this helps,
Davinia.
Explanation:
It is given that,
Length of the copper wire, l = 4.4 m
Diameter of copper wire, d = 1.3 mm = 0.0013 m
Radius of copper wire, r = 0.00065 m
The resistivity of the copper wire, 
We need to find the resistance of the copper wire. It is given by :


R =0.055 ohms
So, the resistance of the copper wire is 0.055 ohms. Hence, this is the required solution.
Answer:
300 K
Explanation:
First, we have find the specific heat capacity of the unknown substance.
The heat gained by the substance is given by the formula:
H = m*c*(T2 - T1)
Where m = mass of the substance
c = specific heat capacity
T2 = final temperature
T1 = initial temperature
From the question:
H = 200J
m = 4 kg
T1 = 200K
T2 = 240 K
Therefore:
200 = 4 * c * (240 - 200)
200 = 4 * c * 40
200 = 160 * c
c = 200/160
c = 1.25 J/kgK
The heat capacity of the substance is 1.25 J/kgK.
If 300 J of heat is added, the new heat becomes 500 J.
Hence, we need to find the final temperature, T2, when heat is 500 J.
Using the same formula:
500 = 4 * 1.25 * (T2 - 200)
500 = 5 * (T2 - 200)
100 = T2 - 200
=> T2 = 100 + 200 = 300 K
The new final temperature of the unknown substance is 300K.
2,450 Joules, kinetic energy is 1/2 mass x velocity squared.