No it isn't. That's a description of a generator.
Answer:
Explanation:
Given that on the tree the gravitational energy stored is 8J
Then, mgh = 8J.
The apple begins to fall and hit the ground, what is the maximum kinetic energy?
Using conservation of energy, as the above is about to hit the ground, the apple is at is maximum speed, and the height then is 0m, so the potential energy at the ground is zero, so all the potential of the apple at the too of the tree is converted to kinetic energy as it is about to hits the ground. Along the way to the ground, both the Kinetic energy and potential energy is conserved, it is notice that at the top of the tree, the apple has only potential energy since velocity is zero at top, and at the bottom of the tree the apple has only kinetic energy since potential energy is zero(height=0)
So,
K.E(max) = 8J
Answer:

Explanation:
<u>Accelerated Motion
</u>
It refers to the motion of objects in which velocity is not constant over time. If the change of the velocity occurs at the same rate, then we say it's uniformly accelerated. Being
= initial speed,
= final speed, a= constant acceleration, x= distance traveled
Then, the scalar relation between them is

The aircraft needs to reach a liftoff speed of 53 m/s from rest (assumed) having only 420 meters to do so. We can compute the acceleration by solving for a



The heat required to raise the temperature of the unit mass of a given substance by a given amount (usually one degree).
or C. Mass if you're on plato