Answer:
(C) Aminoacyl-tRNA synthetases have an additional active site that binds to non-cognate tRNAs. The tRNAs that bind to this second active are hydrolyzed and released from the enzyme.
Explanation:
In case of translation, proof reading is done by aminoacyl-tRNA synthetases only. Aminoacyl-tRNA synthetases have two mechanisms to avoid error during translation which are mentioned as under:
<u>(1) Chemical proof reading:</u> Incorrect amino acids rather than being hydrolyzed in catalytic pocket get hydrolyzed in editing pocket and thus they hardly get attached to tRNA.
For example: For distinguishing similar amino acids like isoleucine and valine, isoleucyl-tRNA synthetase uses a second active site which is meant for only valine not for isoleucine. In this particular site, valine which had entered the enzyme is cleaved away with the help of editing reaction after which the enzyme is well prepared to process isoleucine which is the correct amino acid for this enzyme.
<u>(2) Kinetic proof reading: </u>Even if an incorrect amino acid has entered a particular aminoacyl-tRNA synthetase, it does not cause appropriate conformational change in the enzyme because of which the incorrect amino acid loosens from the enzyme and does not get incorporated.
Note: In this example, only chemical proof reading is mentioned not kinetic proof reading.
Hello.
3 reasons are
Lack of EnthusiasmLack of Focus
Lack of Eye Connection
Have a nice day
Answer:
Heterozygous
Explanation:
An organism in which the two copies of the gene are identical — that is, have the same allele — is called homozygous for that gene. An organism which has two different alleles of the gene is called heterozygous. Pea plants can have red flowers and either be homozygous dominant (red-red), or heterozygous (red-white). If they have white flowers, then they are homozygous recessive (white-white). Carriers are always heterozygous.
DNA, Gene, chromosome, nucleus, Cell
Answer:
They are the monomers of the proteins.
Explanation:
When hundreds or thousands of amino acids join together, they create proteins, which are then used for many tasks in organisms, such as doing work in cells, help with DNA replication, etc. So, the monomer will be the amino acids, and the polymer will be the proteins themselves.