1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
yulyashka [42]
4 years ago
9

Earth has four motions in its movement through space, rotation, revolution, processional, and solar motion, which two are of any

importance in meteorology?
Physics
1 answer:
Anna007 [38]4 years ago
6 0

Answer:

rotation and revolution

Explanation:

out of the four motions the earth is subject to which are: rotation about its axis, revolution around  the Sun, processional motion (a slow conical movement ) of the axis, and the solar motion (this refers to the

movement of the whole solar system with space),  only two are of any

importance to meteorology as this two causes changes in weather and seasons. The first motion is rotation. Earth rotates on its axis

once every 24 hours. One-half of the Earth’s surface is

therefore facing the Sun at all times. The second motion of Earth is its revolution around  the Sun. The revolution around the Sun and the earth tilt on its axis are responsible for changes in seasons. The Earth

makes one complete revolution around the Sun in

approximately 365 1/4 days.

You might be interested in
Changes in motion come from;
almond37 [142]

Answer:

C-Mass

Explanation:

3 0
3 years ago
It's important to match your exercise shoes with the type of exercise in which you will be participating, Please select the best
Feliz [49]

Answer:

true

Explanation:

8 0
4 years ago
Read 2 more answers
What is the importance of the x- y- Cartesian coordinate system in motion of an object in two dimensions?
ArbitrLikvidat [17]

Answer:

To have a constant velocity, an object must have a constant speed in a constant direction. Constant direction constrains the object to motion in a straight path thus, a constant velocity means motion in a straight line at a constant speed.

Explanation:

Velocity is defined as the rate of change of position with respect to time, which may also be referred to as the instantaneous velocity to emphasize the distinction from the average velocity. In some applications the "average velocity" of an object might be needed, that is to say, the constant velocity that would provide the same resultant displacement as a variable velocity in the same time interval, v(t), over some time period Δt. Average velocity can be calculated as:

{\displaystyle {\boldsymbol {\bar {v}}}={\frac {\Delta {\boldsymbol {x}}}{\Delta {\mathit {t}}}}.}{\boldsymbol {\bar {v}}}={\frac {\Delta {\boldsymbol {x}}}{\Delta {\mathit {t}}}}.

The average velocity is always less than or equal to the average speed of an object.

In terms of a displacement-time (x vs. t) graph, the instantaneous velocity (or, simply, velocity) can be thought of as the slope of the tangent line to the curve at any point, and the average velocity as the slope of the secant line between two points with t coordinates equal to the boundaries of the time period for the average velocity.

{\displaystyle {\boldsymbol {\bar {v}}}={1 \over t_{1}-t_{0}}\int _{t_{0}}^{t_{1}}{\boldsymbol {v}}(t)\ dt,}{\boldsymbol {\bar {v}}}={1 \over t_{1}-t_{0}}\int _{t_{0}}^{t_{1}}{\boldsymbol {v}}(t)\ dt,

where we may identify

{\displaystyle \Delta {\boldsymbol {x}}=\int _{t_{0}}^{t_{1}}{\boldsymbol {v}}(t)\ dt}\Delta {\boldsymbol {x}}=\int _{t_{0}}^{t_{1}}{\boldsymbol {v}}(t)\ dt

and

{\displaystyle \Delta t=t_{1}-t_{0}.}\Delta t=t_{1}-t_{0}.

Instantaneous velocity

{\displaystyle {\boldsymbol {v}}=\lim _{{\Delta t}\to 0}{\frac {\Delta {\boldsymbol {x}}}{\Delta t}}={\frac {d{\boldsymbol {x}}}{d{\mathit {t}}}}.}{\boldsymbol {v}}=\lim _{{\Delta t}\to 0}{\frac {\Delta {\boldsymbol {x}}}{\Delta t}}={\frac {d{\boldsymbol {x}}}{d{\mathit {t}}}}.

From this derivative equation, in the one-dimensional case it can be seen that the area under a velocity vs. time (v vs. t graph) is the displacement, x. In calculus terms, the integral of the velocity function v(t) is the displacement function x(t).

{\displaystyle {\boldsymbol {x}}=\int {\boldsymbol {v}}\ d{\mathit {t}}.}{\displaystyle {\boldsymbol {x}}=\int {\boldsymbol {v}}\ d{\mathit {t}}.}

Since the derivative of the position with respect to time gives the change in position (in metres) divided by the change in time (in seconds), velocity is measured in metres per second (m/s). Although the concept of an instantaneous velocity might at first seem counter-intuitive, it may be thought of as the velocity that the object would continue to travel at if it stopped accelerating at that moment.

Relationship to acceleration

Although velocity is defined as the rate of change of position,

{\displaystyle {\boldsymbol {a}}={\frac {d{\boldsymbol {v}}}{d{\mathit {t}}}}.}{\boldsymbol {a}}={\frac {d{\boldsymbol {v}}}{d{\mathit {t}}}}.

From there, we can obtain an expression for velocity as the area under an a(t) acceleration vs. time graph. As above, this is done using the concept of the integral:

{\displaystyle {\boldsymbol {v}}=\int {\boldsymbol {a}}\ d{\mathit {t}}.}{\displaystyle {\boldsymbol {v}}=\int {\boldsymbol {a}}\ d{\mathit {t}}.}

Constant acceleration

{\displaystyle {\boldsymbol {v}}={\boldsymbol {u}}+{\boldsymbol {a}}t}{\boldsymbol {v}}={\boldsymbol {u}}+{\boldsymbol {a}}t

with v as the velocity at time t and u as the velocity at time t = 0. By combining this equation with the suvat equation x = ut + at2/2, i

{\displaystyle {\boldsymbol {x}}={\frac {({\boldsymbol {u}}+{\boldsymbol {v}})}{2}}{\mathit {t}}={\boldsymbol {\bar {v}}}{\mathit {t}}}{\boldsymbol {x}}={\frac {({\boldsymbol {u}}+{\boldsymbol {v}})}{2}}{\mathit {t}}={\boldsymbol {\bar {v}}}{\mathit {t}}.

{\displaystyle v^{2}={\boldsymbol {v}}\cdot {\boldsymbol {v}}=({\boldsymbol {u}}+{\boldsymbol {a}}t)\cdot ({\boldsymbol {u}}+{\boldsymbol {a}}t)=u^{2}+2t({\boldsymbol {a}}\cdot {\boldsymbol {u}})+a^{2}t^{2}}v^{2}={\boldsymbol {v}}\cdot {\boldsymbol {v}}=({\boldsymbol {u}}+{\boldsymbol {a}}t)\cdot ({\boldsymbol {u}}+{\boldsymbol {a}}t)=u^{2}+2t({\boldsymbol {a}}\cdot {\boldsymbol {u}})+a^{2}t^{2}

{\displaystyle (2{\boldsymbol {a}})\cdot {\boldsymbol {x}}=(2{\boldsymbol {a}})\cdot ({\boldsymbol {u}}t+{\frac {1}{2}}{\boldsymbol {a}}t^{2})=2t({\boldsymbol {a}}\cdot {\boldsymbol {u}})+a^{2}t^{2}=v^{2}-u^{2}}(2{\boldsymbol {a}})\cdot {\boldsymbol {x}}=(2{\boldsymbol {a}})\cdot ({\boldsymbol {u}}t+{\frac {1}{2}}{\boldsymbol {a}}t^{2})=2t({\boldsymbol {a}}\cdot {\boldsymbol {u}})+a^{2}t^{2}=v^{2}-u^{2}

{\displaystyle \therefore v^{2}=u^{2}+2({\boldsymbol {a}}\cdot {\boldsymbol {x}})}\therefore v^{2}=u^{2}+2({\boldsymbol {a}}\cdot {\boldsymbol {x}})

4 0
3 years ago
HELP ME DUE NOW ILL BRAINELIST YOU IF U DID IT PLEASE PLEASE
qwelly [4]

Answer:

you have to post the diagram with your question together cause we are to use the diagram to answer the question. Post the Diagram we are to ANSWER from. i really want to help

3 0
3 years ago
The line where the Earth and sky seem to meet forms the:
babunello [35]
The ocean and the sky provide a clean, flat line where the Earth seems to meet the sky. If you're standing on the beach looking out at the sea, the part of the sea that "touches" the horizon is called the offing
6 0
4 years ago
Read 2 more answers
Other questions:
  • How is temperature and pressure related to air volume?
    14·1 answer
  • Sand on a beach is covered by other layers of sand over time. The extra layers compress the first layer, packing it tighter and
    9·1 answer
  • Light traveling in water (n = 1.33) into an unknown medium.If rhe angles if incidence and refraction are 40 degrees and 25 degre
    10·1 answer
  • Hydraulic brakes use Pascal’s principle. The driver exerts a force of 100 N on the brake pedal. This force is increased by the s
    11·1 answer
  • Where is the kinetic energy and potential energy equal on a pendulum?
    15·1 answer
  • Two north poles will blank
    6·1 answer
  • A rarefaction is a place where the medium of a _____.
    15·2 answers
  • A car's position in relation to time is plotted on the graph. What can be said about the car during segment B?
    11·2 answers
  • Waves that make up the visible part of the electromagnetic spectrum have
    7·1 answer
  • 9. What happens to the particles of a medium when the temperature is high?
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!