Answer:
material work function is 0.956 eV
Explanation:
given data
red wavelength 651 nm
green wavelength 521 nm
photo electrons = 1.50 × maximum kinetic energy
to find out
material work function
solution
we know by Einstein photo electric equation that is
for red light
h ( c / λr ) = Ф + kinetic energy
for green light
h ( c / λg ) = Ф + 1.50 × kinetic energy
now from both equation put kinetic energy from red to green
h ( c / λg ) = Ф + 1.50 × (h ( c / λr ) - Ф)
Ф =( hc / 0.50) × ( 1.50/ λr - 1/ λg)
put all value
Ф =( 6.63 ×
(3 ×
) / 0.50) × ( 1.50/ λr - 1/ λg)
Ф =( 6.63 ×
(3 ×
) / 0.50 ) × ( 1.50/ 651×
- 1/ 521 ×
)
Ф = 1.5305 ×
J × ( 1ev / 1.6 ×
J )
Ф = 0.956 eV
material work function is 0.956 eV
Answer:
height of the opening actually measure is 4'-9"
Explanation:
given data
window size = 3'-3" x 4'-9"
solution
height of the opening should actually measure will be 4'-9" in 3'-3" x 4'-9"
because according to architectural plan height can not be more than the opening size of window
and we can't take smaller height also
so fit in opening window we should take same height of height of opening window and that is here 4'-9"
so here height of the opening actually measure is 4'-9"
Answer:
15 watt
Explanation:
Power is the rate at which work is done.
This means you divide the work done with the amount of time used to perform the work.
The formula for Power is : P = W/t where;
W= work done in J = 45
t= time in seconds = 3 sec
P= 45/ 3 = 15 watt
Answer:
Inertia
Explanation:
Inertia is the property that any physical object has of remaining in its state of relative motion. Therefore, it is the resistance that opposes matter to modify its state of motion, which includes changes in speed or changes in the direction of movement.
The magnetic dipole moment of the current loop is 0.025 Am².
The magnetic torque on the loop is 2.5 x 10⁻⁴ Nm.
<h3>What is magnetic dipole moment?</h3>
The magnetic dipole moment of an object, is the measure of the object's tendency to align with a magnetic field.
Mathematically, magnetic dipole moment is given as;
μ = NIA
where;
- N is number of turns of the loop
- A is the area of the loop
- I is the current flowing in the loop
μ = (1) x (25 A) x (0.001 m²)
μ = 0.025 Am²
The magnetic torque on the loop is calculated as follows;
τ = μB
where;
- B is magnetic field strength
B = √(0.002² + 0.006² + 0.008²)
B = 0.01 T
τ = μB
τ = 0.025 Am² x 0.01 T
τ = 2.5 x 10⁻⁴ Nm
Thus, the magnetic dipole moment of the current loop is determined from the current and area of the loop while the magnetic torque on the loop is determined from the magnetic dipole moment.
Learn more about magnetic dipole moment here: brainly.com/question/13068184
#SPJ1