One day, as I was walking, I found some sandy soil beside the road.
I think it's Barium sulfate, the soild and percipitate
The missing word here is <u>Asthenosphere.</u><u> </u>
The convection in the asthenosphere directly propels the tectonic plates of the earth.
Did you know that the asthenosphere is thought to remain malleable because of heat from deep within the Earth? It is thought to be lubricating the earth's tectonic plates' undersides and enabling movement.
The older, denser portions of the lithosphere that are dragged downward in subduction zones are stored in the asthenosphere, according to the theory of plate tectonics.
The lithosphere above is stressed by convection currents, and the cracking that frequently results manifests as earthquakes.
Magma is forced upward through volcanic vents and spreading centers by convection currents produced within the asthenosphere, which also results in the formation of new crust.
Learn why properties of the asthenosphere are important: brainly.com/question/11484043
#SPJ4
Answer:
145 m
Explanation:
Given:
Wavelength (λ) = 2.9 m
we know,
c = f × λ
where,
c = speed of light ; 3.0 x 10⁸ m/s
f = frequency
thus,

substituting the values in the equation we get,

f = 1.03 x 10⁸Hz
Now,
The time period (T) = 
or
T =
= 9.6 x 10⁻⁹ seconds
thus,
the time interval of one pulse = 100T = 9.6 x 10⁻⁷ s
Time between pulses = (100T×10) = 9.6 x 10⁻⁶ s
Now,
For radar to detect the object the pulse must hit the object and come back to the detector.
Hence, the shortest distance will be half the distance travelled by the pulse back and forth.
Distance = speed × time = 3 x 10^8 m/s × 9.6 x 10⁻⁷ s) = 290 m {Back and forth}
Thus, the minimum distance to target =
= 145 m
Answer:
μ = 0.692
Explanation:
In order to solve this problem, we must make a free body diagram and include the respective forces acting on the body. Similarly, deduce the respective equations according to the conditions of the problem and the directions of the forces.
Attached is an image with the respective forces:
A summation of forces on the Y-axis is performed equal to zero, in order to determine the normal force N. this summation is equal to zero since there is no movement on the Y-axis.
Since the body moves at a constant speed, there is no acceleration so the sum of forces on the X-axis must be equal to zero.
The frictional force is defined as the product of the coefficient of friction by the normal force. In this way, we can calculate the coefficient of friction.
The process of solving this problem can be seen in the attached image.