Answer:
F = 5226.6 N
Explanation:
To solve a lever, the rotational equilibrium relation must be used.
We place the reference system on the fulcrum (pivot point) and assume that the positive direction is counterclockwise
F d₁ = W d₂
where F is the applied force, W is the weight to be lifted, d₁ and d₂ are the distances from the fulcrum.
In this case the length of the lever is L = 5m, t the distance desired by the fulcrum from the weight to be lifted is
d₂ = 200 cm = 2 m
therefore the distance to the applied force is
d₁ = L -d₂
d₁ = 5 -2
d₁= 3m
we clear from the equation
F = W d₂ / d₁
W = m g
F = m g d₂ / d₁
we calculate
F = 800 9.8 2/3
F = 5226.6 N
Answer:
Their speed in a vacuum is a constant value.
Explanation:
Electromagnetic waves consits of oscillations of electric field and magnetic field. The oscillations of these fields occur in a direction perpendicular to the direction of propagation of the waves, so they are transverse wave. Electromagnetic waves, contrary to mechanical waves, do not need a medium to propagate, so they can also travel through a vacuum. In a vacuum, their speed is constant and has always the same value, the speed of light:

Answer:
Because the object should shrink its volume to zero, which is impossible
Explanation:
Let's talk about gases for simplicity. Ideal gases are governed by the ideal gas equation:

where
p is the gas pressure
V is the volume of the gas
n is the number of moles
R is the gas constant
T is the absolute temperature
From the formula, we see that T and V are directly proportional: therefore, in order for a gas to have an absolute temperature of zero, it must also have a volume of zero, which is impossible.
You should have the velocity as a function of time either given explicitly or implicitly (a graph)
v = ds/dt (differentiating the position vector)
integrating the acceleration.
you can use impulse or work and energy principle and also newton law of motion to find acceleration then velocity
NOT SURE IF THAT WHAT YOU WANT.
The first step that Enrique must take in order to calculate the tangential speed of the satellite is to convert the period from days to seconds.
We know that the SI unit of speed is meter per second and now, we with to obtain the tangential speed of the satellite.
Since the period is given in days, the first step is to convert the period from days to seconds.
Learn more: brainly.com/question/17638582