Answer: A projectile which is fired horizontally is being constantly acted upon by acceleration due to gravity, acting vertically downwards. Hence, it does not follow a straight line path. Also Why a projectile fixed along the horizontal not follow a straight line path? Because the projectile fired horizontally is constantly acts upon by acceleration due to gravity acting vertically downwards.
Explanation:
Hope this helped :)
Answer:
v = 384km/min
Explanation:
In order to calculate the speed of the Hubble space telescope, you first calculate the distance that Hubble travels for one orbit.
You know that 37000 times the orbit of Hubble are 1,280,000,000 km. Then, for one orbit you have:

You know that one orbit is completed by Hubble on 90 min. You use the following formula to calculate the speed:

hence, the speed of the Hubble is approximately 384km/min
Answer:
Explanation:
Given
mass of book(m)=2.1 kg
height up to which book is lifted is (h)2.2 m
height of person 
Potential energy of book relative to ground=mgh

(b)PE w.r.t to person head =mg(h-h0)

work done by person in lifting box 2.2 m w.r.t floor
Word done =Potential Energy of box relative to floor=45.2 J
Answer:
84 kj/min = 1.4 kj/sec
Power Out / Power In = Heat Out / Heat In - Coefficient of Performance
1.4 kj/sec / 1.2 kj/sec = 1.17 = COP
So, the frequency of that light approximately 
<h3>Introduction</h3>
Hi ! Here I will help you to discuss the relationship between frequency and wavelength, with the velocity constant of electromagnetic waves in a vacuum. We all know that regardless of the type of electromagnetic wave, it will have the same velocity as the speed of light (light is part of electromagnetic wave too), which is 300,000 km/s or
m/s. As a result of this constant property, <u>the shorter the wavelength, the greater the value of the electromagnetic wave frequency</u>. This relationship can also be expressed in this equation:

With the following condition :
- c = the constant of the speed of light in a vacuum ≈
m/s
= wavelength (m)- f = electromagnetic wave frequency (Hz)
<h3>Problem Solving</h3>
We know that :
- c = the constant of the speed of light in a vacuum ≈
m/s
= wavelength =
m.
What was asked :
- f = electromagnetic wave frequency = ... Hz
Step by step :






<h3>Conclusion :</h3>
So, the frequency of that light approximately 
<h3>See More :</h3>