Density = (mass) / (volume)
4,000 kg/m³ = (mass) / (0.09 m³)
Multiply each side
by 0.09 m³ : (4,000 kg/m³) x (0.09 m³) = mass
mass = 360 kg .
Force of gravity = (mass) x (acceleration of gravity)
= (360 kg) x (9.8 m/s²)
= (360 x 9.8) kg-m/s²
= 3,528 newtons .
That's the force of gravity on this block, and it doesn't matter
what else is around it. It could be in a box on the shelf or at
the bottom of a swimming pool . . . it's weight is 3,528 newtons
(about 793.7 pounds).
Now, it won't seem that heavy when it's in the water, because
there's another force acting on it in the upward direction, against
gravity. That's the buoyant force due to the displaced water.
The block is displacing 0.09 m³ of water. Water has 1,000 kg of
mass in a m³, so the block displaces 90 kg of water. The weight
of that water is (90) x (9.8) = 882 newtons (about 198.4 pounds),
and that force tries to hold the block up, against gravity.
So while it's in the water, the block seems to weigh
(3,528 - 882) = 2,646 newtons (about 595.2 pounds) .
But again ... it's not correct to call that the "force of gravity acting
on the block in water". The force of gravity doesn't change, but
there's another force, working against gravity, in the water.
Answer:
the renegade
Explanation: charklie dfamielo
Taking into account the definition of molarity, the concentration of a solution that contains 70 g of H₂SO₄ in 0,28 dm³ of solution is 2.5510
.
<h3>Definition of molarity</h3>
Molar concentration or molarity is a measure of the concentration of a solute in a solution and indicates the number of moles of solute that are dissolved in a given volume.
The molarity of a solution is calculated by dividing the moles of solute by the volume of the solution:

Molarity is expressed in units
.
<h3>This case</h3>
In this case, you have:
- number of moles= 70 g×
= 0.7143 moles, where 98 g/mole os the molar mass of H₂SO₄ - volume= 0.28 dm³= 0.28 L (being 1 dm³= 1 L)
Replacing in the definition of molarity:

Solving:
<u><em>Molarity= 2.5510 </em></u>
Finally, the concentration of a solution that contains 70 g of H₂SO₄ in 0,28 dm³ of solution is 2.5510
.
Learn more about molarity:
brainly.com/question/9324116
brainly.com/question/10608366
brainly.com/question/7429224
#SPJ1