The law of conservation of mass states that matter is neither created or destroyed only transformed. A balanced chemical equation has the same number of molecules on both sides of the equation.
Answer:
5.3 × 10⁻¹⁷ mol·L⁻¹
Explanation:
Let <em>s</em> = the molar solubility.
Cu₂S(s) ⇌ 2Cu⁺(aq) + S²⁻(aq); K_{sp} = 6.1 × 10⁻⁴⁹
E/mol·L⁻¹: 2<em>s</em> <em>s
</em>
K_{sp} =[Cu⁺]²[S²⁻] = (2<em>s</em>)²×<em>s</em> = 4s^3 = 6.1 × 10⁻⁴⁹

![s = \sqrt[3]{1.52 \times 10^{-49}} \text{ mol/L} = 5.3 \times 10^{-17} \text{ mol/L}](https://tex.z-dn.net/?f=s%20%3D%20%5Csqrt%5B3%5D%7B1.52%20%5Ctimes%2010%5E%7B-49%7D%7D%20%5Ctext%7B%20mol%2FL%7D%20%3D%205.3%20%5Ctimes%2010%5E%7B-17%7D%20%5Ctext%7B%20mol%2FL%7D)
Answer:
Concentric circles of contour lines indicate a hilltop; concentric circles with hachure marks indicate a close depression.
Explanation:
Hope this helped Mark BRAINLIEST!!!
<em>A glass flask of volume 400 cm³ is just filled with mercury at 0°C. How much mercury will overflow when the temperature of the system rises to 80°C.</em>
<em />
The volume of mercury that overflow is 5.376 cm³
<h3>Further explanation</h3>
Given
volume of glass = 400 cm³
Δt=80 °C - 0 °C = 80
Required
overflow volume
Solution
With an increase in the temperature of the substance, objects can expand. This expansion includes volume expansion.
Can be formulated

Find volume expansion of glass and mercury


Overflow :
ΔV mercury - ΔV glass : 5.76-0.384 = 5.376 cm³
Oxid # : 0 0 +2 -1

∴ the nickel was oxidized while chlorine was reduced
nickel reduction potential = - 0.25 V
but since it is being oxidised the you have to switch the integer sign so the
the potential of nickel in this case becomes + 0.25 V
chlorine was reduced thus its reduction potential remains same = + 1.36 V
Overall Cell potential = ∑ of half cell potential
The overall cell potential = (+ 1.36) + (+ 0.25)
= + 1.61 V
∴
the answer would be D