Molarity is defined by the number of moles of a substance dissolved in a number of liters in solution. 15,000 milliliters is equal to 15 liters, so
2.5/15 = 0.1666... M
The molarity of this solution would be 0.167.
A because if you multiple it, you will be moving the decimal one time
First things first carbon is quite common element here in Earth. But it is not all, right? Otherwise we would be built from other, more common elements. The thing is in carbon reactiveness. Also energy needed to create carbon chemical compounds isnt that big when compared to etc nitrogen. It can bind up to 4 different elements (atoms). Thanks to this can givesingle, both and triple bindings! Carbon can give away electrons or take them making his degree of oxidation consequently from -IV to +IV. All this vareity leads to vareity of bigger elements that will be created from carbon later- carbohydrates, proteins etc. As life needs vareity to adapt to different situations and climax only carbon therefore can provide this.
Answer:
oook
hi I am so sorry sorry sorry sorry I don't no answer
Explanation:
but you follow me and give me brainliest ok by by by by
The empirical formula is C₂H₆O.
We must calculate the <em>masses of C, H, and O</em> from the masses given.
<em>Mass of C</em> =38.20 g CO₂ × (12.01 g C/44.01 g CO₂) = 10.424 g C
<em>Mass of H</em> = 23.48 g H₂O × (2.016 g H/18.02 g H₂O) = 2.6268 g H
<em>Mass of O</em> = Mass of compound - Mass of C - Mass of H
= (20.00 – 10.424 – 2.6268) g = 6.9487 g
Now, we must <em>convert these masses to moles</em> and <em>find their ratios</em>.
From here on, I like to summarize the calculations in a table.
<u>Element</u> <u>Mass/g</u> <u>Moles</u> <u>Ratio</u> <u>Integers</u>
C 10.424 0.8680 1.999 2
H 2.6268 2.606 6.001 6
O 6.9487 0.4343 1 1
The empirical formula is C₂H₆O.