Answer:
yes it is a danger.Copper doesn't break down in the environment, leading to its accumulation in plants and animals. Absorption of some copper into the body is essential for human health. Acute industrial exposure to copper fumes, dusts or mists can result in chronic copper poisoning.Copper is a mineral and an element essential to our everyday lives. It is a major industrial metal because of its high ductility, malleability, thermal and electrical conductivity and resistance to corrosion. It is an essential nutrient in our daily diet.
Answer:
Second order
Explanation:
We could obtain the order of reaction by looking at the table very closely.
Now notice that in experiment 1 and 2, the concentration of [OH^-] was held constant while the concentration of [S8] was varied. So we have;
a situation in which the rate of reaction was tripled;
0.3/0.1 = 2.10/0.699
3^1 = 3^1
Therefore the order of reaction with respect to [S8] is 1.
For [OH^-], we have to look at experiment 2 and 3 where the concentration of [S8] was held constant;
x/0.01 = 4.19/2.10
x/0.01 = 2
x = 2 * 0.01
x = 0.02
So we have;
0.02/0.01 = 2^1
2^1 = 2^1
The order of reaction with respect to [OH^-] = 1
So we have the overall rate law as;
Rate = k[S8]^1 [OH^-] ^1
Overall order of reaction = 1 + 1 = 2
Therefore the reaction is second order.
Answer:
I think option A is right answer
Answer:
Explanation:
The Law of Conservation of Mass is defined and explained using examples of reacting mass calculations using the law are fully explained with worked out examples using the balanced symbol equation. The method involves reacting masses deduced from the balanced symbol equation.
<u>Answer:</u> The equilibrium concentration of water is 0.597 M
<u>Explanation:</u>
Equilibrium constant in terms of concentration is defined as the ratio of concentration of products to the concentration of reactants each raised to the power their stoichiometric ratios. It is expressed as
For a general chemical reaction:
The expression for is written as:
The concentration of pure solids and pure liquids are taken as 1 in the expression.
For the given chemical reaction:
The expression of for above equation is:
We are given:
Putting values in above expression, we get:
Hence, the equilibrium concentration of water is 0.597 M