Answer:
Answer below
Explanation:
Just draw a photo of someone pushing an object across a table. Your push is the force acting on the object you're pushing.
1) Balanced chemical equation
H2SO4 + 2NaOH ---> Na2 SO4 + 2H2O
=> 1 mol H2SO4 : 2 moles NaOH
2) Convert 89.3 g of H2SO4 and 96.0 g of NaOH to moles
Molar mass of H2SO4 = 98.1 g/mol
Molar mass of NaOH = 40.0 g/mol
moles = mass in grams / molar mass
moles H2SO4 = 89.3 g / 98.1 g/mol = 0.910 mol
moles NaOH = 96.0 g / 40.0 g/mol = 2.40 mol
3) Theoretical molar ratio = 2 moles NaOH / 1 mol H2SO4
So, all the 0.91 mol of H2SO4 will be consumed along with 1.820 (2*0.91) moles of NaOH, and 0.580 moles (2.40 - 1.82) of NaOH will be left over by the chemical reaction.
4) Convert 0.580 moles NaOH to mass
0.580 moles * 40.0 g/mol = 23.2 g of NaOH will be left over
Combination or Synthesis Reaction. A combination of synthesis reaction is one. where a new product is synthesized by combination of two or three reactants.
Decomposition Reaction
Displacement or Replacement Reaction
Acid Base Reaction
Combustion Reaction
Answer: L
Explanation:
the first state described is solid the second state liquid or gas can be used to describe it but as your answer choices dont show solid to liquid it is solid to gas
Hey there!:
Isotopes : abundance :
46 Ti 8.0%
47 Ti 7.8 %
48 Ti 73.4 %
49 Ti 5.5 %
50 Ti 5.3 %
Weighted average = ∑ Wa * % / 100
Therefore:
( 46 * 8.0) + (47 * 7.8 ) + (48 * 73.4 ) + ( 49 * 5.5 ) + ( 50*5.3 ) / 100 =
4792.3 / 100
= 47.923 a.m.u
Hope that helps!