No they can't because the definition of an element is, something that exists as a single atom
For example, oxygen is an element and can't be broken down anymore however, it can be combined with hydrogen to make water
Maybe b might be the answer
The balanced equation for the above reaction is as follows;
<span>Fe</span>₂<span>O</span>₃<span> + 3 CO --> 2 Fe + 3 CO</span>₂
<span>stoichiometry of CO to Fe is 3:2
molar volume states that 1 mol of any gas occupies a volume of 22.4 L
If 22.4 L contains 1 mol of CO
Then 3.65 L contains - 1/22.4 x 3.65 = 0.16 mol
3 mol of CO forms 2 mol of Fe
Then 0.16 mol of CO forms - 2/3 x 0.16 = 0.1067 mol of Fe
Therefore mass of Fe produced - 0.1067 mol x 55.8 g/mol = 5.95 g</span>
Answer:
True
Explanation:
The accuracy level is usually determined by the difference between the experimental and correct value. It is important to note that the smaller the difference between the average experimental value and the correct (true) value, the more accurate it is.
When the difference is large then it means the accuracy level is low and not up to the required standard.
Answer:
The assumption is quite reasonable.........
A lightbulb contains Ar gas at a temperature of 295K and at a pressure of 75kPa. The light bulb is switched on, and after 30 minutes its temperature is 418 K. What is a numerical setup for calculating the pressure of the gas inside the light bulb at 418K?
Explanation:
P
1
T
1
=
P
2
T
2
given constant
n
, and constant
V
, conditions that certainly obtain with a fixed volume light bulb.
And so
P
2
=
P
1
T
1
×
T
2
=
75
⋅
k
P
a
295
⋅
K
×
418
⋅
K
≅
100
⋅
k
P
a
.
Had the light bulb been sealed at normal pressure during its manufacture, what do you think might occur when it is operated?